• Title/Summary/Keyword: 헬름홀츠 자유에너지

Search Result 2, Processing Time 0.019 seconds

Evaluation of Critical Flow Function by Using Helmholtz Free Energy for Natural Gas Flow Measurement (천연가스 유량 측정에서 헬름홀츠 자유에너지를 이용한 임계유동함수 계산)

  • Ha, Young-Cheol;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1167-1173
    • /
    • 2013
  • This study aimed to calculate the CFFs (critical flow functions) of a sonic nozzle bank with a 12-nozzle package within 1 s. Toward this end, the Helmholtz free energy of natural gas was formulated by using the AGA8-dc equation of state in a form without integral terms, and thereafter, thermodynamic properties such as the enthalpy, entropy, speed of sound, and heat capacity, which are used in CFF calculation, were derived in analytical form. As a result, the calculation time of CFFs was improved from 6.7 s in a previous study to 0.6 s per 12-nozzle package and kept almost constant regardless of the number of components in natural gas. Furthermore, it was confirmed that the calculated CFF values were in agreement with the results of a CFF international comparison test carried out under ISO management in 1998-1999.

Estimation of Uncertainty in Critical Flow Function for Natural Gas (천연가스의 임계유동함수 불확도 평가)

  • Ha, Young-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.625-638
    • /
    • 2014
  • In this study, the uncertainties in the critical flow functions (CFFs) calculated by the AGA8-dc equation of state were estimated. To this end, the formulas for enthalpy, entropy, and speed of sound, which are used in calculating the CFF, were expressed in the form of dimensionless Helmholtz free energy and its derivatives, and the uncertainty in Helmholtz free energy was inferred. To consider the variations in the compressibility-dependent variables induced by the variation (i.e., uncertainty) in compressibility, the form of the AGA8-dc equation was modified to have a deviation equal to the uncertainty under each flow condition. For each independent uncertainty component of the CFF, a model for uncertainty contribution was developed. All these changes were applied to GASSOLVER, which is KOGAS's thermodynamic database. As a result, the uncertainties in the CFF were estimated to be 0.025, 0.055, and 0.112 % at 10, 50, and 100 bar, respectively, and are seen to increase with the increase in pressure. Furthermore, these results could explain the deviations in the CFFs across the different labs in which the CFF international comparison test was conducted under the ISO management in 1999.