• Title/Summary/Keyword: 헤드익스펜더

Search Result 2, Processing Time 0.016 seconds

Design of Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템 설계)

  • Im, Jong-Min;Moon, Sang-Moo;Eun, Hee-Kwang;Choi, Seok-Weon;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2008
  • The vibration test system of satellite environment test dept. has been used successfully for the vibration tests of a majority of korean space programs. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and satellites, KARI have developed the large size multi-electromagnetic shaking system with $3{\times}3m$ head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able to sustain up to 8 tons test load and 300 kNm overturing moment. This paper describes the design components in the development process of multi-excitation shaker system.

  • PDF

Configuration and Design of the Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템의 구성 및 설계)

  • 우성현;김홍배;문상무;김영기;임종민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.618-622
    • /
    • 2004
  • The vibration test system of SITC(Satellite Integration and Test Center) at KARI(Korea Aerospace Research Institute) has been used successfully for the environmental tests of a majority of korean space programs, such as KOMPSAT, Koreasat KITSAT, STSAT and KSR program since 1996. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and tole-communication satellites which will be developed in the near future, KARI undertook to construct the large size multi-electromagnetic shaking system with 3 $\times$ 3m head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able te sustain up to 8 tons test load and 300 kNm overturing moment. And to avoid the tremendous cost and effort to furnish the seismic block with large size and weight, it will adopt a Lin-E-Air type configuration with which the seismic block is less severe than a Solid-Truninon type. In addition, to fulfill the strong requirement of high overturning moment the additional guidance system including a central bearing system on a central support and several pad bearings around the head expander body is now considered. This paper describes the configuration and the design parameters of the multi-shaking system which is under development by KARI's engineers.

  • PDF