• Title/Summary/Keyword: 허용 응력비

Search Result 122, Processing Time 0.027 seconds

Allowable Compressive Stress of Pre-Tensioned Members with Tee or Inverted Tee Sections at Transfer (T형 및 역T형 단면을 가지는 프리텐션부재의 프리스트레스 도입시 허용 압축응력)

  • Lee, Deuck-Hang;Lee, Jeong-Yeon;Lim, Joo-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.353-364
    • /
    • 2011
  • In a previous research performed by the authors, the allowable compressive stress coefficient (K) in pretensioned members with rectangular section at transfer was proposed based on strength design theory. In this study, a subsequent research of an enormous analysis was performed to determine the K factor for Tee and inverted Tee section members, considering the effect of section height (h), section type, amount of tendons ($A_{ps}$), and eccentricity ratio (e/h). Based on the analysis results, the allowable compressive stress coefficients (K) for Tee and inverted Tee section members at transfer were derived, which limit the maximum allowable stresses as 80% and 70% of the compressive strengths at the time of release for Tee section and inverted Tee section, respectively. And these were larger than the allowable stresses specified in domestic and other international codes. In order to verify the proposed equations, they were compared to the test results available in literature and other codes, which showed that the allowable stresses in domestic and international codes are unconservative for the cases with low eccentricity ratios while conservative for those with high eccentricity ratios. The proposed equations, however, estimate the allowable stresses of the Tee and inverted Tee section members reasonably close to test results.

Structural Design Optimization of Gageocho Jacket Structure Considering Unity Check (가거초 자켓 구조물의 허용응력비를 고려한 구조 최적설계)

  • Kim, Byungmo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.205-212
    • /
    • 2021
  • Offshore jacket structures generally comprise steel members, and the safety standard for jacket structures typically focuses on the steel components. However, large amounts of concrete grouting is filled in the legs of the Gageocho jacket structure to aid in the recovery from typhoon damage. This paper proposes a safe and lightweight design for the Gageocho ocean research station comprising steel members instead of large amounts of concrete reinforcement in the legs. Based on the actual design, the structural members are grouped according to their functional roles, and the inner diameter of the cross-section in each design group is defined as a design variable. Structural optimization is carried out using a genetic algorithm to minimize the total weight of the structure. To satisfy the conservative safety standards in the offshore field, both the maximum stress and the unity check criteria are considered as design constraints during optimization. For enhanced safety confidence, extreme environmental conditions are assumed. The maximum marine attachment thickness and the section erosion in the splash zone are applied. Additionally, the design load is defined as the force induced by extreme waves, winds, and currents aligned in the same direction. All the loading directions surrounding the structure are considered to design the structure in a balanced and safe manner. As a result, compared with the current structure, the proposed structure features a 45% lighter design, satisfying the strict offshore safety criteria.

Comparison of Allowable Axial Stress Provisions of Cylindrical Liquid Storage Tanks under Seismic Excitation (지진 하중을 받는 원통형 플랜트 탱크 구조물의 축방향 허용압축응력 설계기준 비교 연구)

  • Oh, Chang Kook;Lee, So Ri;Park, Jang Ho;Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2016
  • Stability of cylindrical liquid storage tanks under seismic excitation could prevent catastrophic disaster of human life and economic loss. Domestic provisions on allowable compressive stress in tank walls to prohibit buckling failure are either incomplete or inconsistent, so foreign specifications such as API 650, BS EN 1998-4:2006 or New Zealand Standards are employed in stability design. In this study, response spectrum analyses are performed for plant tanks having different ratios of height to diameter or diameter to thickness to calculate hydrodynamic pressure on tank walls. Then nonlinear buckling analyses are conducted to estimate magnitude of buckling stress. By comparing analysis results with those from foreign design specifications, appropriate domestic design provisions are suggested.

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Analysis of Allowable Stresses of Machine Graded Lumber in Korea (국내 기계등급구조재의 허용응력 분석)

  • Hong, Jung-Pyo;Oh, Jung-Kwon;Park, Joo-Saeng;Han, Yeon Jung;Pang, Sung-Jun;Kim, Chul-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • 365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Design comparison of Fixed Offshore Structures Designed by WSD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 고정식 해양구조물 설계결과 비교 )

  • Bae-Keun Jeong;Doo-Yong Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.42-49
    • /
    • 2023
  • When designing fixed jacket structures, overseas design standards are applied due to the absence of domestic design methods. Although the US API standards are mainly applied, API RP 2A suggests two design methods: the allowable stress design method (WSD) and the load resistance coefficient method (LRFD), and is applied according to the designer's judgment. In this study, the stress ratio of the two design methods was reviewed and compared using SACS, an analysis program dedicated to marine structures, for fixed marine structures actually installed on the domestic coast. As a result of the review, it was found that the LRFD design method showed a greater stress ratio for extreme load analysis and transportation analysis, and the WSD design method showed a greater stress ratio for loading and lifting. Therefore, when applying the design method, it is considered appropriate to select the final design method considering safety and economic feasibility after conducting an applicability review for the two design methods.

Evaluation of fire resistance according to load ratio and limit temperature (하중비와 한계온도에 의한 강구조 부재의 내화성능평가법 제안)

  • Kwon, In-Kyu;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.395-399
    • /
    • 2010
  • 강구조 부재의 내화성능평가를 위한 비재하가열시험은 강재 허용온도로 평가되고 있으나, 강재의 허용온도 설정은 H형강 부재의 최대하중로 평가되는 한계용도와 고온에서의 강소재의 허용응력도 능력으로 설정되었으므로 실지 작용되는 강구조 부재의 하중조건과 다양한 부재의 종류 등의 관점에서 허용온도의 적용은 다소 불합리한 점이 있다고 판단된다. 따라서 본 연구에서는 강구조 건축물에서의 부재에 작용하는 하중에 따른 내화성능의 차이를 보이고 이에 따른 합리적인 내화성능 평가방법을 제안하고자 한다.

  • PDF

Evaluation of Canister Weld Flaw Depth for Concrete Storage Cask (콘크리트 저장용기의 캐니스터 용접부 결함깊이 평가)

  • Moon, Tae-Chul;Cho, Chun-Hyung;Jung, Sung-Hun;Lee, Young-Oh;Jung, In-su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radio-active materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B&PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.