• Title/Summary/Keyword: 허용월파량

Search Result 5, Processing Time 0.024 seconds

Estimation for Maximum Individual Wave Overtopping of a Rubble Mound Structure under Non-breaking Conditions (비쇄파조건에서 경사식구조물의 개별 최대월파량 산정)

  • Lee, Jong-In;Jeong, Jeong Kuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.663-673
    • /
    • 2021
  • Normally, allowable mean overtopping discharge is used as a design parameter for coastal structures. The crest elevation of a structure must ensure wave overtopping discharge within acceptable limits for structural safety and the safety of pedestrians, vehicles, operations, and so on. Some researchers have alternatively proposed using the maximum individual wave overtopping volumes as design criteria during a design storm, since these can provide a better design measure than the mean overtopping rate. This study contributes to the knowledge on maximum individual overtopping volumes in Rayleigh-distributed wave conditions. Two-dimensional physical model tests on typical rubble mound structure geometries were performed, and the new measurement method for individual overtopping was adopted. An empirical formula was proposed to predict the maximum individual overtopping volumes based on the mean overtopping rate, and the reduction effects by the armor crest width on the mean wave overtopping discharge were assessed.

Reliability Analysis of Sloped Coastal Structures against Random Wave Overtopping (월파에 대한 경사식 해안 구조물의 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.214-223
    • /
    • 2003
  • A reliability analysis is straightforwardly applied to the sloped coastal structures against the random wave overtopping. A reliability function can be directly derived from a empirical formula in which may take into account many variables associated with the random wave overtopping. The probability of failure exceeded the allowable overtopping discharge can be evaluated as a function of dimensionless crest height with some reasonable statistical properties and distribution functions of each random variable. Some differences of probabilities of failure occurred from variations of the slopes of structures as well as types of armour are investigated into quantitatively. Additionally, the effects of the crest width of units placed in front of the concrete cap on the probability of failure may be analyzed. Finally, the sensitivity analyses are carried out with respect to the uncertainties of random variables. It is found that the overall characteristics similar to the known experimental results are correctly represented in this reliability analyses. Also, it should be noted that the probabilities of failure may be quantitatively obtained for several structural and hydraulic conditions, which never assess in the deterministic design method. Thus, it may be possible for determination on the crest height of sloped coastal structures to consider the probability of failure of wave overtopping, by which may be increased the efficiency of practical design.

Physical Model Tests for Mean Wave Overtopping Discharge of Rubble-mound Structure Covered by Tetrapods: RC/AC = 1 and cotα = 1.5 Conditions (테트라포드로 피복된 경사식구조물의 평균월파량 산정을 위한 수리모형실험: RC/AC = 1 및 cotα = 1.5 조건)

  • Jong-In Lee;Young-Taek Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • The allowable mean overtopping discharge is used as a design parameter for coastal structures. The crest elevation of coastal structures should ensure the wave overtopping discharge within acceptable limits for structural safety and the safety of pedestrians, vehicles, operations, and so on. In this study, two-dimensional physical model tests on typical rubble-mound structure geometries were performed and the the mean wave overtopping discharges under various water depth and wave conditions were measrued. The various test conditions were applied to the tests with the change of the wave steepness, relative freeboard and relative wave height. An empirical formula from the experimental data was proposed to predict the mean wave overtopping volumes.

Reliability Analysis of Maximum Overtopping Volume for Evaluating Freeboard of Vertical Breakwaters (직립식 방파제의 마루높이 산정을 위한 최대월파량에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • A reliability analysis model is developed for evaluating the crest freeboard of vertical breakwaters based on the concepts of maximum overtopping volume of individual wave. A reliability function is formulated by defining the margin of admissible overtopping volume and maximum overtopping volume that is depend on the number of overtopping waves, dimensionless crest freeboard, and mean overtopping discharge. In addition, Level III MCS technique is straightforwardly suggested by which the related empirical parameters to reliability function can be considered to be random variables with the wide range of different uncertainties. It can be possible to calculate the probabilities of failure according to the relative crest freeboard with the variations of the incident wave directions, the structural types of vertical breakwaters, and admissible overtopping volumes in conditions of the long and short crested-waves.

Modified SBEACH Model for Predicting Erosion and Accretion in front of Seadike (수정 SBEACH 모델에 의한 호안 전면의 침퇴적 예측)

  • Han, Jae-Myong;Kim, Kyu-Han;Shin, Sung-Won;Deguchi, Ichiro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.482-488
    • /
    • 2011
  • Seadike is a coastal structure constructed in the rear region of the foreshore to maximize its usability by preventing direct effect of wave. The expected construction field is determined under the design wave and tidal condition where minor wave overtopping is anticipated. Thus, the location of seadike is generally fixed at the highest site of the surrounding area with seadike crest height controlling the permissible range of wave overtopping volume. But a lot of times, frontal sand beach of the seadike continuously deforms due to incident waves, resulting failure in maintaining its initial slope. The erosion and deposition of the seadike front cause changes in the crest height and volume of wave overtopping and decrease in the setting depth of the seadike, which endangers seadike region as a result. In this study, the relation of local scouring and setting depth of the seadike front in the run-up region is examined by using 2D hydraulic model tests and numerical simulations by modified SBEACH model. As a result, the study learned that if appropriate boundary condition is applied to the modified SBEACH model, it is possible to create practical estimations on the local scouring at the seadike foot when erosive waves flow into the region.