• Title/Summary/Keyword: 허용균열길이

Search Result 13, Processing Time 0.02 seconds

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

FEM Analysis of Effect of Shot Peening for Stress Corrosion Cracking at Welded Part (용접부 응력부식균열 방지를 위한 쇼트피닝 효과의 유한요소 해석)

  • NAM KI-Woo;AHN SEOK-WHAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.239-241
    • /
    • 2004
  • Stress intensity factor of semi-circular crack front was calculated by FEM, and also allowable crack size which doesn‘t break out the fracture by SCC in residual stress field of STS materials. Allowable crack size was increased with compressive residual stress provided by shot peening on material surface, and with magnitude of compressive residual stress for depth direction.

  • PDF

Evaluation of Fatigue Crack Growth Rate on the Surface of Steel Members Using COD(Crack Opening Displacement) Measurement (COD(Crack Opening Displacement) 측정에 의한 강재표면의 피로균열진전속도 평가)

  • Kim, Kwang Jin;Kim, In Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Steel structures have been allowed to have fatigue damage tolerance in fact. If it would be assessed whether fatigue crack is growing or not and How fast fatigue crack is propagating, we should make a rational decision on methods and a period of reinforcement in the maintenance. In this study, fatigue crack growth tests on two kinds of through-thickness cracked steel plates and a out-of-plane gusset welded joint were conducted to evaluate fatigue crack growth rate using the COD(Crack Opening Displacement), and COD measurement using strain gauges was examined to offer a practical method. As a result, we proposed a reasonable assessing method for fatigue crack growth rate using the COD and it was experimentally proved practical to estimate the COD through measuring strains.

A study on crack opening behavior of small fatigue crack in Al 2024-T3 material using computerized interferometric strain/displacement gage (계장화 미소변위 측정기를 이용한 Al 2024-T3 소재의 미소피로 균열의 열림특성연구)

  • 이주진;남승훈;허용학;임대순;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1576-1582
    • /
    • 1990
  • To examine small fatigue crack behavior, the crack opening displacement (COD) was measured for surface cracks in the range of few tens to hundreds .mu.m using the computerized Interferometric Strain/Displacement Gage (ISDG) which could measure the relative displacement with a resolution of 0.02 .mu.m. The load-COD record is stored and analyzed after the test to determined the opening load. Single-edge notched specimens, 2.3mm thick, of Al 2024-T3 were precracked at load ratios of 0.0, -1.0 and -2.0 to make small fatigue cracks. The opening loads were measured these small cracks and compared with those of long cracks. The opening load ratios for the short cracks are about 10% smaller than those for long cracks at positive R-ratios, but are about 100% smaller at negative R-ratios.

알루미나에서 강도에 미치는 마모의 영향

  • 박성길;허용학;조성재
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.11a
    • /
    • pp.36-40
    • /
    • 1990
  • 세라믹재료는 ductility가 작아 그 강도가 균열의 가혹성, 즉 크기와 모양에 의하여 결정되는 특징을 가지고 있다. 한편 마모는 표면에 균열을 생성시킬 수 있기 때문에 강도에 큰 영향을 미칠 수 있다. 그러나 지금까지 강도에 미치는 마모의 영향은 잘 밝혀져 있지 않다. 따라서 본 연구에서는 세라믹재료중에서도 물리적 성질들이 잘 알려져 있는 알루미나를 택하여 마모기구를 관찰하고 마모가 강도에 미치는 영향을 관찰하였다. 소결후 고온등방가압 처리된 알루미나 소결체를 입수하여 3mmX4mmX40mm크기의 굽힘시험시편으로 가공하였다. 두개의 4mmX40mm면중에서 한명을 diamond paste $1\mu m$까지 사용하여 polishing하였다. 시편의 polishing된 면위에 질화규소 볼을 올려 놓고, 하중을 가한 상태에서 볼을 와복운동시켰다. 시편위에 형성되는 마모흔적의 길이를 16mm이상이 되도록 하였다. 왕복속도는 약 2 헤르쯔도 하였다. 하중은 300, 600, 900N으로 하였다. 윤활유로는 paraffin oil을 사용하였다. 마모시험이 끝난 시편을 광학현미경 및 주사전자현미경으로 관찰한 후, 4-점굽힘시험하여 강도를 구하였다. 4-점굽힘시험시 외부 및 내부 지지점간의 거리는 30mm, 10mm로 하였으며, cross head speed는 분당 0.5mm로 하였다.

  • PDF

Safety Margin Improvement Against Failure of Zr-2.5Nb Pressure Tube (Zr-2.5Nb압력관 파손에 대한 안전여유도 개선)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.775-783
    • /
    • 1995
  • This study is to assess the effects of increasing wall thickness on the safety margin of pressure tube in operating and of lowering initial hydrogen concentration on the DHC growth in respect to the improvement of the reliability of pressure tube in CANDU reactors. The pressure tube with thicker wall of 5.2 mm shows much higher safety margin for flaw tolerance by 25% than the current 4.2mmm tube. The thicker pressure tubes have a great benefit in LBB assessment including the initial crack depth at which DHC occurs, the crack length at onset of leaking and the available time for action. The resistance for the pressure tube ballooning at LOCA accident is also increased with the thicker tube. The calculations for Heq concentration after 20 years of operation as a function of wall thickness and initial hydrogen concentration show that the 5.2 mm nil thickness tube with 5 ppm initial hydrogen concentration is the most resistant to DHC. with the lower initial hydrogen concentration, TSS temperature for the precipitation or hydride decreases and the crack growth during cooldown reduces.

  • PDF

Calculation of the Crack Length for a Pipe Specimen using the Modified Load Ratio Method (수정된 하중비법을 이용한 배관 시험편의 균열 길이 계산)

  • Choi, Jung-Hun;Huh, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1375-1382
    • /
    • 2009
  • The objective of this paper is to apply the load ratio method to the measurement of the crack length of the real scale pipe specimen. The load ratio method was modified and finite element analyses were performed to derive the relationship between the normalized compliance and the normalized crack length for the pipe specimen. In order to measure the crack length, the direct current potential drop method and the modified load ratio method were applied to the pipe test. The applicability of the modified load ratio method was confirmed by comparing the calculated crack length with the measured crack length from the pipe experiment.

A Study on the Measurement of Crack Length of Pipe Specimen Using Image Processing (이미지 프로세싱을 이용한 실배관 시험편의 균열 길이 측정에 관한 연구)

  • Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung;Huh, Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.7-11
    • /
    • 2010
  • Difficulties associated with full-scale pipe tests are rather obvious. That is, it is not only difficult to perform them but also very expensive and it requires lots of experience. And the process of the fracture test for the pipe specimen is very difficult and complicated. Because the pipe specimen, the test jig and the test equipment are very large and heavy, it requires lots of costs and times. In this study, to easily perform the fracture toughness test for a pipe specimen, load line displacement data was obtained using the image processing method.

The Experimental Study of Full-scale Optimized Composite Beam (OCB) Reinforced with Open Strands (노출강연선으로 보강된 하이브리드 건축용 OCB보의 실물모형 재하실험연구)

  • Lee, Doo-Sung;Kim, Tae-Kyun;Chae, Gyu-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.471-480
    • /
    • 2015
  • The building structure is planned to maximize the use of space in recent. It was developed of a hybrid OCB (Optimized Composite Beam) for trying to take advantage of the maximize space. The OCB is composed of the steel h-beam section reinforced by open strands in negative moment zone and the psc concrete section in positive zone. Flexural behaviors of typical architectural bybrid OCB section was investigated. The 15 m OCB specimen was tested under three point static loading system. Following results are obtained from the tests; 1) The OCB with 15 m span develop initial flexural crackings under the 171% of full service loading. 2) Overall deflections of OCB under the service loads are less than those of the allowable limit in KCI Code provision. 3) The crack patterns, failure mode and ultimate load capacity of test specimen and F.E. model in this paper and they are compared to each other. The OCB is verified of structural reliability from the experimental results.