• Title/Summary/Keyword: 허니콤 코어

Search Result 14, Processing Time 0.022 seconds

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.

Structural Stiffness Analysis on Doors having Pyramidal Truss Cores in an Urban Transit Vehicle (피라미드 트러스 심재를 채용한 도시철도차량 출입문의 구조강성평가)

  • Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.697-702
    • /
    • 2017
  • A preliminary study was carried out to investigate the feasibility of replacing honeycomb cores with pyramidal truss cores in the doors of urban transit railway vehicles. The doors in current operation are sandwich structures comprising a honeycomb core and reinforcements between two facesheets. The structural requirements of doors for urban transit vehicle are specified in the KRS and KRT and standards, according to which the deflections from three-point bending tests must be limited. To this end, two types of pyramidal truss cores with equivalent mass to a honeycomb core were designed. The structural stiffness of doors with pyramidal truss cores and honeycomb cores were numerically calculated via finite element analysis. The three-point bending models were constructed and simulated, and then the calculated deflections were compared with the requirements specified in the regulations. The results show that doors with pyramidal truss cores satisfied the stiffness requirements, although their deflections were 2.5% larger than that of the honeycomb cores. Therefore, the pyramidal truss cores could replace the aluminum honeycomb cores, and their multi-functional capability could be exploited.

Radiation Characteristic Analysis of Vivaldi Antenna with Honeycomb Core (허니콤 코어에 적용된 비발디 안테나의 방사 특성 분석)

  • Woo-Hyeok Jang;Jung-Eun Noh;Chun-Gon Kim
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • Numerous studies have explored structural antennas for integrating advanced wireless systems into aircraft without altering their external form. However, much of the research on structural antennas has focused on patch antennas, which are characterized by limitations such as narrow frequency bands and low directivity. In contrast, the Vivaldi antenna, widely utilized in wireless applications, offers the advantages of a wide frequency band and high directivity. Nevertheless, its application to aircraft has been challenging due to radiation direction constraints. In this study, we endeavor to address this issue by proposing the application of the antenna patch onto the honeycomb wall, thus enabling the use of the Vivaldi antenna on aircraft. The impact of the honeycomb structure on antenna radiation performance was analyzed, and the potential of the honeycomb Vivaldi antenna was validated through simulation.

A study on the improvement of sound absorption coefficient of an honeycomb panel by the core resonance (코어공명을 이용한 허니콤패널의 흡음율 개선에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • Honeycomb panel has a constructive advantage because it is constructed with a honeycomb core, so it has relatively higher strength ratio to weight. Therefore honeycomb panel has been used as the light weight panels in the high-speed railway technology and high-speed ship like as cruise yachts. Also it has been used in the aircraft and aerospace industry as a structural panel because light weight structure is indispensible in that field of industry. Recently, the honeycomb panel is embossed in the viewpoints of high oil prices as the lightweight panel of the transport machine, however the sound insulation capacity of the honeycomb panel is poorer than those of uniform and another sandwich panels. In this paper a method to improving the sound absorption coefficient of a honeycomb panel Is studied by using the Helmholtz resonator. The sound absorption coefficients for some kinds of honeycomb cores are demonstrated by the normal incident absorption coefficient method.

  • PDF

Study on Low Temperature Environmental Characteristics of Sandwich Core Made with 3D Printer (3D 프린터로 제작한 샌드위치 코어의 저온 환경 특성 연구)

  • Ahn, Ju-Hun;Choi, Ju-Hwan;Hong, Seung-Lae;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 2019
  • Studies on the fabrication of UAV by using 3D printer have been actively carried out. However, research on structural load characteristics in low temperature environment is insufficient. In this study, a composite sandwich structure with ordinary orbs structure was proposed, and the load characteristics for temperature condition changes were analyzed. The ordinary orbs and honeycomb structures were fabricated by using a FDM type 3D printer. The bending load test was carried out at room temperature and low temperature condition. The low temperature condition was classified into four cases. Bending load tests were performed in a low temperature chamber to maintain the required temperature conditions. As a result of the test, it was confirmed that the proposed ordinary orbs structure had better load characteristics at low temperatures than the existing honeycomb structure.

Impact Damage of Honeycomb Sandwich Antenna Structures (통신 안테나용 허니콤 샌드위치 구조물의 충격 손상에 관한 연구)

  • 조성재;김차겸;박현철;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.74-77
    • /
    • 2001
  • The impact response and damage of CLAS panel was investigated experimentally. The facesheet material used was RO4003 woven-glass hydrocarbon/ceramic and the core material was Nomex honeycomb with a cell size of 3.2mm and a density of 96 kg/$\textrm{m}^{3}$. The shield plane used was RO4003 and 2024-T3 aluminum. Static indentation and impact test was conducted to characterize the type and extent of the damage observed in two CLAS panels, and the performance of antenna used in a wireless LAN system. Correlation of peak contact force, residual indentation and the delamination area shows impact damage of the panel with an aluminum shield plane is larger than that of the panel with RO4003 shield plane, although tile former is more penetration resistant. The damage was observed by naked eye, ultrasonic inspection and cross sectioning. The shape and size of delamination was estimated by ultrasonic inspection, and the area of delamination linearly increases as impact energy increases. The performance of impact damaged antenna was estimated by measuring return loss and radiation pattern.

  • PDF

A Study on the Analysis of causes & minimizing of Defects at Composite Materials Sandwich Structure reinforced with Honeycomb core in Autoclave Processing (하니콤 코어로 보강된 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안)

  • 권순철;양철문;최병근;이세원;한중원;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.21-29
    • /
    • 2000
  • The Purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, Thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF

An Investigation on the Strength of Insert Joints of Composite-Honeycomb Sandwich Structures (복합재 -하니콤 샌드위치 구조물의 인써트 조인트 강도 특성 연구)

  • Choi, Ji-Young;Song, Keun-Il;Choi, Jin-Ho;Kim, Kwang-Soo;Jang, Young-Soon;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.26-33
    • /
    • 2007
  • Pull-out and shear strengths of insert Joints of sandwich structure were investigated by experiment. Specimens were prepared by cocuring of nomex honeycomb core and carbon-epoxy composite face using an adhesive FM73. A total of 75 specimens with 10 different types depending on the core height and density, face thickness, and loading direction were tested. In the test under pull-out loading, although both the core height and density affect the failure loads, the effect of cell density is more serious. Dominant factor fur failure loads of the joints under shear loading is face thickness and the effect of core height is negligible. In the joint with same dimension, failure loads vary depending on the potted area of the core, particularly in the pull-out test.

Impact Damage of Honeycomb Sandwich Antenna Structures (통신 안테나용 허니콤 샌드위치 구조물의 충격 손상에 관한 연구)

  • Kim, Cha-Gyeom;Lee, Ra-Mi;Park, Hyeon-Cheol;Hwang, Un-Bong;Park, Wi-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.387-398
    • /
    • 2002
  • The impact response and damage of CLAS panel was investigated experimentally. The facesheet material used was RO4003 woven-glass hydrocarbon/ceramic and the core material was Nomex honeycomb with a cell size of 3.2mm and a density of 96 kg/㎥. The shield plane used was RO4003 and 2024-T3 aluminum. Static indentation and impact test was conducted to characterize the type and extent of the damage observed in two CLAS panels, and the performance of antenna used in a wireless LAN system. Correlation of peak contact force, residual indentation and the delamination area shows impact damage of the panel with an aluminum shield plane is larger than that of the panel with RO4003 shield plane, although the former is more penetration resistant. The damage was observed by naked eye, ultrasonic inspection and cross sectioning. The shape and size of delamination was estimated by ultrasonic inspection, and the area of delamination linearly increases as impact energy increases. The performance of impact damaged antenna was estimated by measuring return loss and radiation pattern. It was revealed that the performance of antenna was related to the impact damage and there was a threshold that the performance of antenna fell as impact energy level changed. The threshold was between the impact energies of 1.5J and 1.75J.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.