• Title/Summary/Keyword: 향상된 유전알고리듬

Search Result 24, Processing Time 0.023 seconds

An Enhanced Genetic Algorithm for Optimization of Multimodal (다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안)

  • 김영찬;양보석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.373-378
    • /
    • 2001
  • The optimization method based on an enhanced genetic algorithms is for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is a global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by single point method in reconstructive search space. Four numerical examples are also presented in this papers to comparing with conventional methods.

  • PDF

Design of optimal BPCGH using combination of GA and SA Algorithm (GA와 SA 알고리듬의 조합을 이용한 최적의 BPCGH의 설계)

  • 조창섭;김철수;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.468-475
    • /
    • 2003
  • In this Paper, we design an optimal binary phase computer generated hologram for Pattern generation using combined genetic algorithm and simulated annealing algorithm together. To design an optimal binary phase computer generated hologram, in searching process of the proposed method, the simple genetic algorithm is used to get an initial random transmittance function of simulated annealing algorithm. Computer simulation shows that the proposed algorithm has better performance than the genetic algorithm or simulated annealing algorithm of terms of diffraction efficiency

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.164-170
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method, response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional test functions and comparing the results to GA. And it was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the rear of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

  • PDF

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.665-673
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary Algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method and response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional left functions and comparing the results to GA. It was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the after body area of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

Optimal Design of Squeeze Film Damper Using an Enhanced Genetic Algorithm (향상된 유전알고리듬을 이용한 스퀴즈 필름 댐퍼의 최적설계)

  • 김영찬;안영공;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.805-809
    • /
    • 2001
  • This paper is presented to determine the optimal parameters of squeeze film damper using an enhanced genetic algorithm (EGA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is minimization of a transmitted load between bearing and foundation at the operating and critical speeds of a flexible rotor. The present algorithm was the synthesis of a genetic algorithm with simplex method for a local concentrate search. This hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution and can find both the global and local optimum solution. The numerical example is presented that illustrated the effectiveness of enhanced genetic algorithm for the optimal design of the squeeze film damper for reducing transmitted load.

  • PDF

Genetic Algorithm based Orthogonal Matching Pursuit for Sparse Signal Recovery (희소 신호 복원을 위한 유전 알고리듬 기반 직교 정합 추구)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2087-2093
    • /
    • 2014
  • In this paper, an orthogonal matching pursuit (OMP) method combined with genetic algorithm (GA), named GAOMP, is proposed for sparse signal recovery. Some recent greedy algorithms such as SP, CoSaMP, and gOMP improved the reconstruction performance by deleting unsuitable atoms at each iteration. However they still often fail to converge to the solution because the support set could not avoid the local minimum during the iterations. Mutating the candidate support set chosen by the OMP algorithm, GAOMP is able to escape from the local minimum and hence recovers the sparse signal. Experimental results show that GAOMP outperforms several OMP based algorithms and the $l_1$ optimization method in terms of exact reconstruction probability.

Optimum Design for Rotor-bearing System Using Advanced Genetic Algorithm (향상된 유전알고리듬을 이용한 로터 베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.533-538
    • /
    • 2001
  • This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.

  • PDF

유전 알고리듬을 이용한 헬리콥터의 퍼지 PID 제어기의 성능 개선

  • 김문환;이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.165-168
    • /
    • 2001
  • 본 논문은 비선형 헬리콥터 시스템의 퍼지 비례-적분-미분 (PID) 제어기의 설계기법을 제안한다. 퍼지 제어기는 풍부한 자유도를 포함하므로 비선형 시스템의 제어에 매우 적합하다. 그러나 이의 설계는 전문가의 지식에 의존하므로 시스템의 정확한 지식의 획득에 어려울 경우 우수한 성능을 보장하는 제어기의 설계가 매우 어렵다. 따라서 본 논문에서는 제안된 퍼지 PID 제어기의 성능 향상 및 최적화를 위하여 전역적 비선형 최적화 기법인 유전 알고리듬 (GA)을 도입한다. 본 논문에서 제안한 퍼지 PID 제어기의 설계기법은 실제 비선형 헬리콥터 실험 장치에 적용하여 그 효용성 및 실제 산업분야에의 응용 가능성을 보인다.

  • PDF

Processor-Architecture for the Faster Processing of Genetic Algorithm (유전 알고리듬 처리속도 향상을 위한 프로세서 구조)

  • 윤한얼;정재원;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.169-172
    • /
    • 2004
  • 유전 알고리듬은 NP-Hard 문제의 해결이나, 함수 최적화, 복잡한 제어기의 파라미터 값 추적 등, 광범위한 분야에 걸쳐 이용되고 있다 일반적인 유전 알고리듬은 적합도 함수를 통해 해들의 품질을 결정하고, 해들의 품질에 따라 선택 연산을 거쳐, 교차나 돌연변이를 통해 우수한 품질의 해를 찾는 과정을 가진다 현재 이 과정은 대부분 소프트웨어적으로 구현되어 범용 프로세서를 통해 수행된다. 그러나 높은 소프트웨어 의존성은 해집단의 크기가 커질수록 교차/변이 연산과 해들의 품질비교에 수행되는 시간을 크게 증가시키는 약점이 있다. 따라서 본 논문에서는 순위 기반 선택과 일점 교차(one-point crossover)를 사용한다는 제약하에, 해들의 순위를 정렬 네트워크를 통해 결정하고 해들을 Residue Number System(RNS)로 표현하여 하드웨어적으로 교차연산을 처리하는 프로세서 구조를 제안한다 이러한 접근을 통해 해들의 품질비교에 걸리는 시간을 크게 줄이고 교차/변이 연산의 효율을 높일 수 있다.

  • PDF