• Title/Summary/Keyword: 향상된 내진성능

Search Result 253, Processing Time 0.023 seconds

Seismic Performance Assessment of Reinforced Concrete Bridge Columns with Interlocking Circular Hoops (결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Park, Kwang-Soon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-90
    • /
    • 2011
  • The purpose of this study was to investigate the seismic performance of reinforced concrete bridge columns with interlocking circular hoops. Three interlocking columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve the existing practice in the design and construction of reinforced concrete bridge columns with interlocking circular hoops.

Seismic Performance Assessment of Roof-Level Joints with Steel Fiber-Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트를 적용한 최상층 접합부의 내진성능 평가)

  • Kim, Sang-Hee;Kwon, Byung-Un;Kang, Thomas H.-K.
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • This study was conducted to verify seismic performance of special moment frame's joints at roof-level with high-strength concrete and SD600 bars. K-RC-H was designed according to the seismic code and K-HPFRC-H had 150% of the original hoop spacing and 1.0% steel fiber volume fraction compared with K-RC-H. Both specimens had remarkable seismic performance without noticeable decrease in moment, but with very good energy dissipation before rebar failure. The U-bars in the joint sufficiently constrained rebar's action that pushed the cover upward. SD600 bars with $1.25l_{dt}$ had minimum slip in the joint. It was considered that the steel fiber contributed to improvement of the bending moment and joint shear distortion, and the result showed that it would be possible to increase the hoop spacing to 150% of the regular spacing.

Seismic Capacity Evaluation of Existing Medium-and low-rise R/C Frame Retrofitted by H-section Steel Frame with Elastic Pad Based on Pseudo-dynamic testing (유사동적실험에 의한 탄성패드 접합 H형 철골프레임공법으로 보강 된 기존 중·저층 R/C 골조의 내진성능 평가)

  • Kim, Jin-Seon;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • In this study, to improve the connection performance between the existing reinforced concrete (R/C) frame and the strengthening member, we proposed a new H-section steel frame with elastic pad (HSFEP) system for seismic rehabilitation of existing medium-to-low-rise reinforced concrete (R/C) buildings. This HSFEP strengthening system exhibits an excellent connection performance because an elastic pad is installed between the existing structure and reinforcing frame. The method shows a strength design approach implemented via retrofitting, to easily increase the ultimate lateral load capacity of R/C buildings lacking seismic data, which exhibit shear failure mechanism. Two full-size two-story R/C frame specimens were designed based on an existing R/C building in Korea lacking seismic data, and then strengthened using the HSFEP system; thus, one control specimen and one specimen strengthened with the HSFEP system were used. Pseudodynamic tests were conducted to verify the effects of seismic retrofitting, and the earthquake response behavior with use of the proposed method, in terms of the maximum response strength, response displacement, and degree of earthquake damage compared with the control R/C frame. Test results revealed that the proposed HSFEP strengthening method, internally applied to the R/C frame, effectively increased the lateral ultimate strength, resulting in reduced response displacement of R/C structures under large scale earthquake conditions.

Evaluation of Spraying Characteristics for Masonry Buildings Seismic Retrofit Fiber-Reinforced Mortar (조적조 내진보강용 섬유보강 모르타르의 분사특성 평가)

  • Hwang, Byoung-Il;Park, Jong-Pil;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.37-43
    • /
    • 2020
  • The seismic reinforcement ratio of SOC facilities, such as domestic roads and railroads, is 96%. Out of approximately 7 million buildings as of 2016, only 0.51 million buildings with seismic performance were secured. Although the proportion of masonry structures is 38.8% of the total buildings, there is almost no seismic resistance, only 2.0%. To solve the problem in Korea, government-level seismic measures are being promoted, but the situation is insufficient. Overseas, the UBC research team in Vancouver, Canada, has developed and used EDCC to reinforce the seismic performance of masonry buildings. EDCC is a construction material that can secure concrete ductility capability by mixing fibers and secure deformation resistance of concrete through bridging action. It is necessary to examine various materials because EDCC is not used as a spray type of secure seismic reinforcement. In this study, as part of the research and development of spraying materials to improve the durability of masonry buildings, this study examined the spraying characteristics of fiber-reinforced mortar according to fiber use and the viscosity change according to the use of thickener. As a result, the working performance of the fiber-reinforced mortar for seismic reinforcement was improved when using 1% fiber and 1% thickener.

Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper (점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.271-278
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load, a ten-story and twenty-story structure subjected to gravity and wind load were designed. The code-specified design spectrums were constructed for each soil type and performance objective, and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Inter-story drift was adopted as the primary performance criterion. According to the analysis results, all model structures turned out to satisfy the performance level for most of the soil conditions except for the soft soil(operational level). It was also found that the seismic performance could be greatly enhanced, and the structures were led to behave elastically by installing viscoelastic dampers on appropriate locations.

  • PDF

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

A Study on the Structural Performance of Steel Plate Damper (강재 플레이트 댐퍼의 구조성능에 관한 연구)

  • Youn, Ilro;Kim, Cheol Hwan;Do, Cheon Gi;Jang, Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • The earthquake which was recently occurred in Kyeongju area caused serious damage to several structures. It is needed to improve capacity against seismic of existing structures constructed before providing seismic design code. This paper is to verify the structural characteristics proposed diagonal steel dampers for existing structures to enhance the seismic resist capacity. The experimental and analysis study were undertaken to obtain the load-displacement relationships of diagonal steel dampers. The valuables were angels and spaces of strut. As a result, it is verified that the proposed steel damper is effective in the seismic reinforcement of existing structures.

Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct. Details of reinforcement for rectangular section require a lot of rectangular hoops and cross-ties. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of the flared column. It can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency. The final objectives of this study are to suggest appropriate oblong hoop details and to provide quantitative reference data and tendency for seismic performance or damage assessment based on the drift levels such as residual deformation, elastic strain energy. This paper describes factors of seismic performance such as ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio and effective stiffness.

Development of a Precast Concrete Structural Wall Adopting Improved Connections in the Plastic Hinge Region (소성힌지 영역의 접합부를 개선한 PC 구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2010
  • The purpose of this study is to develop a precast concrete structural wall system that can assure reliable seismic performance. In previous studies, the connections of precast concrete structural walls have had some problems in their seismic performance. Therefore, this research proposes precast concrete structural walls which have an improved seismic performance. One is a hybrid precast concrete structural wall that is composed of a reinforced concrete component and a precast concrete component, and another is a precast concrete wall whose reinforcements have a partially reduced section and are partially unbonded from the surrounding concrete. To evaluate the seismic performance of the proposed precast concrete structural walls, the behavior of three specimens, including a reinforced concrete wall, were subjected to reversed cyclic combined flexure and shear. According to the test results, the proposed precast concrete structural walls have reliable seismic performance.