In this paper, we suggest the "Fuzzy Behavior Knowledge Space(FBKS)" and explain how to utilize the FBKS when aggregating decisions of individual classifiers. The concept of "Behavior Knowledge Space(BKS)" is known to be the best method in the context that each classifier offers only one class label as its decision. However. the BKS does not considers measurement value of class label. Furthermore, it does not allow the heuristic knowledge of human experts to be embedded when combining multiple decisions. The FBKS eliminates such drawbacks of the BKS by adapting the fwzy concepts. Our method applies to the classification results that contain both class labels and associated measurement values. Experimental results confirm that the FBKS could be a very promising tool in pattern recognition areas.
본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 행위 별 시간에 따른 가속도 센서 데이터의 변화 패턴을 충분히 반영하기 위해, 1단계 분류에서는 결정트리 모델 학습과 분류를 수행하고, 2단계 분류에서는 1단계 분류 결과들의 시퀀스를 이용하여 HMM모델 학습과 분류를 수행하였다. 또한, 본 논문에서는 특정 사용자나 스마트폰의 특정 위치, 방향 변화에도 견고한 행위 인식을 위하여, 동일한 행위에 대해 사용자와 스마트폰의 위치, 방향을 변경하면서 다양한 훈련 데이터를 수집하였다. 6720개의 가속도 센서 데이터를 이용하여 총 6가지 실내 행위들을 인식하기 위한 실험들을 수행하였고, 그 결과 높은 인식 성능을 확인 할 수 있었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.257-260
/
2007
인간의 행위에는 외부환경으로부터 감각정보가 입력되어 반응되는 무의식적인 행동과 뇌에 의한 추론과 인지에 의한 행동으로 분류할 수 있다. 동일한 환경 조건하에서의 인간 행위분류의 통해 활용 적합한 응용프로그램을 개발하여 적용하여 본다. 본 논문에서는 인간의 몸에 부착하여 움직임을 데이터로 분석할 수 있도록 행동인식 시스템을 개발하였다. 인간행동의 인식패턴을 분류하기 위해 Soft-Computing Algorithm을 행위 추출센서에 적용시킨 단독 시스템을 개발하여 센서모듈로부터 인간의 행동 패턴을 분류할 수 있도록 한다. 이러한 센서모듈은 3축 각속도 및 가속도 센서를 부착시킨 모듈로 Micro-Processor를 사용하여 모듈을 구성하였으며, 구축된 모듈은 인간의 몸에 착용하여 인간의 움직임을 디지털 데이터로 변환된다. 변환된 데이터를 무선통신을 통해 워크스테이션에 전달되어 인간행위에 대한 패턴분류 알고리즘 처리가 가능하며, 추출된 데이터를 기반으로 인간의 행동분석과 교정이 이루어 질 수 있도록 한다. 본 논문에서의 최종 시나리오는 운전자의 행동패턴을 이용한 행동 감지 및 서비스 시스템을 구성하는 데에 목적을 둔다.
Cho, Geumhwan;Han, Manhyung;Lee, Ho Sung;Lee, Sungyoung
Proceedings of the Korean Society of Computer Information Conference
/
2012.07a
/
pp.65-68
/
2012
본 논문에서는 최근 활발히 연구가 진행되고 있는 행위인식 연구 분야 중에서 스마트폰 환경에서의 개인화된 행위 인식기 및 로거를 제안한다. 최근 스마트폰의 보급이 활발해지면서 행위 인식 연구 분야에서 스마트폰을 이용하는 연구가 활발히 진행되고 있다. 그러나 스마트폰에서는 센서를 이용하여 행위정보를 수집하고, 서버에서 는 분류 및 처리하는 방식으로 실시간 인식과 개발자에 의한 트레이닝으로 인해 개인화된 트레이닝이 불가능하다는 단점이 있다. 이러한 단점을 극복하고자 Naive Bayes Classifier를 사용하여 스마트폰 환경에서 실시간으로 사용자 행위 수집이 가능하고 행위정보의 분류 및 처리가 가능한 경량화 및 개인화된 행위 인식기 및 로거의 구현을 목적으로 한다. 제안하는 방법은 행위 인식기를 통해 행위 인식이 가능할 뿐만 아니라 로거를 통해 사용자의 라이프로그, 라이프패턴 등의 연구 분야에 이용이 가능하다.
점차 네트워크상의 침입 시도가 증가되고 다변화되어 침입탐지에 많은 어려움을 주고 있다. 시스템에 새로운 침입에 대한 탐지능력과 다량의 감사데이터의 효율적인 분석을 위해 데이터마이닝 기법이 적용된다. 침입탐지 방법 중 비정상행위 탐지는 모델링된 정상행위에서 벗어나는 행위들을 공격행위로 간주하는 기법이다. 비정상행위 탐지에서 정상행위 모델링을 하기 위해 연관규칙이나 빈발에피소드가 적용되었다. 그러나 이러한 기법들에서는 시간요소를 배제하거나 패턴들의 발생순서만을 다루기 때문에 정확하고 유용한 정보를 제공할 수 없다. 따라서 이 논문에서는 이 문제를 해결할 수 있는 시간연관규칙과 분류규칙을 이용한 비정상행위 탐지 모델을 제안하였다. 즉, 발생되는 패턴의 주기성과 달력표현을 이용, 유용한 시간지식표현을 갖는 시간연관규칙을 이용해 정상행위 프로파일을 생성하였고 이 프로파일에 의해 비정상행위로 간주되는 규칙들을 발견하고 보다 정확한 비정상행위 판별 여부를 결정하기 위해서 분류기법을 적용하였다.
Recently, research to classify human activity using imagery has been actively conducted for the purpose of crime prevention and facility safety in public places and facilities. In order to improve the performance of human activity classification, most studies have applied deep learning based-transfer learning. However, despite the increase in the number of backbone network models that are the basis of deep learning as well as the diversification of architectures, research on finding a backbone network model suitable for the purpose of operation is insufficient due to the atmosphere of using a certain model. Thus, this study applies the transfer learning into recently developed deep learning backborn network models to build an intelligent system that classifies human activity using imagery. For this, 12 types of active and high-contact human activities based on sports, not basic human behaviors, were determined and 7,200 images were collected. After 20 epochs of transfer learning were equally applied to five backbone network models, we quantitatively analyzed them to find the best backbone network model for human activity classification in terms of learning process and resultant performance. As a result, XceptionNet model demonstrated 0.99 and 0.91 in training and validation accuracy, 0.96 and 0.91 in Top 2 accuracy and average precision, 1,566 sec in train process time and 260.4MB in model memory size. It was confirmed that the performance of XceptionNet was higher than that of other models.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.452-454
/
2003
기존의 실시간 에이전트 환경에서는 에이전트 구조에서 고려하지 않았던 높은 복잡성의 문제를 해결하기에 환경에 대한 고려가 부족하여 구현 시 충분한 지침으로 상기에는 부족하거나 적합하지 않았다. 본 논문에서는 이러한 고려하여야 할 환경에서 필요한 요소들을 기존의 계층기반 에이전트 구조를 보완한 혼합형 구조를 이용하여 행위 기 반 구조를 설계하고 구현하였다. 분산적이며 실시간으로 동작하는 환경에서는 효율적이고 범용적으로 사용 할 수 있는 행위 기반 구조가 요구된다. 본 논문에서 제시하는 에이전트 구조는 행위의 논리적 상하계층에 중점을 둔 계층별 분류를 사용하지 않고. 범주 분류한 RtABCM을 사용하여 복잡한 실시간 환경에 유연하게 적응할 수 있는 구조를 제안하였다. 이를 통하여 계층의 단계와 병렬적으로 진행이 가능한 동일한 계층 행위의 수에 제약을 두지 않게 되어 정적인 계층 구조에서 오는 제약의 한계를 극복하고 있다. 또한 행위의 객체화와 이를 위한 구성 요소의 지원으로 실시간 환경에 대한 다중의 행위나 계획 진행에 대한 유연한 진행. 양방향성을 지원하는 확장된 행위모델. 설계와 구현에 있어 자유롭고 유연한 모델을 제시하고 있다. 본 논문에서는 RtABCM에 적응한 행위기반 구조를 실시간 에이전트 환경인 GameBots에 적용시켜 구조의 실시간 환경에 대한 적응성을 증명하고 있다.
In a goal-oriented dialogue, speakers' intentions can be represented by domain actions that consist of pairs of a speech act and a concept sequence. Therefore, if we plan to implement an intelligent dialogue system, it is very important to correctly infer the domain actions from surface utterances. In this paper, we propose a statistical model to determine speech acts and concept sequences using conditional random fields at the same time. To avoid biased learning problems, the proposed model uses low-level linguistic features such as lexicals and parts-of-speech. Then, it filters out uninformative features using the chi-square statistic. In the experiments in a schedule arrangement domain, the proposed system showed good performances (the precision of 93.0% on speech act classification and the precision of 90.2% on concept sequence classification).
There was a dire need to compile data about energy consumption data by use to analyze residential energy consumption patterns relating to changes in lifestyles, or changes in life behavior. Accordingly, bottom-up model for residential energy consumption by residential use was developed by life behavior classification in an attempt to analyze energy consumption. This paper multiplied each appliance's running times by each appliance by life behavior and built a residential bottoms-up model to figure out the energy consumption of each household. The uses by life behavior were broken down into lighting, heating, cooling, entertainment, obtaining information, hygiene, and cooking.
So far, the behaviors of Web users have been predicted or analyzed mostly by their demographic characteristics or by considering in which context they gain access to that. But now there is a question about whether those characteristics are the only factors to trigger their use of Web. If the answer is not affirmative, what types of additional factors could cause such an action and how they characterize it should be discussed. User profile information has been considered one of the crucial elements to define user characteristics in user-centered UI design sector, and in order to apply it to UI design, it's needed to meditate on the above-mentioned questions. In this study, it's first attempted to have a good understanding of the users of different media and to review existing user classification methods. Next, user classification variables and relevant scales were prepared to sort out users according to their type of using Web, and case study was conducted to identify the behavioral characteristics of users and classify them according to their behavioral features. Finally, the user profile features of individual user groups were figured out based on data that were gathered by making an experiment, and data mapping was fulfilled between the behavioral characteristics and user profile characteristics to find out what types of behaviors were caused by the characteristics of user profile. As a result, it's found that user characteristics could have an impact on not only their general information and relevant contexts but their attitude of using different media and personality type. There were some problems with the experimental design, but more accurate information on the relationship of user behaviors to user profile characteristics will be obtained if those problems are eliminated. As user behaviors could be predicted only by user profile characteristics, user classification is expected to make a contribution to enhancing the efficiency of UI design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.