• Title/Summary/Keyword: 행렬 학습

Search Result 179, Processing Time 0.036 seconds

A Vision Transformer Based Recommender System Using Side Information (부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템)

  • Kwon, Yujin;Choi, Minseok;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.119-137
    • /
    • 2022
  • Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.

Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique (키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석)

  • Youngseok Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2023
  • In this study, trends in ICT education were investigated by analyzing the frequency of appearance of keywords related to machine learning and using conversion of iteration correction(CONCOR) techniques. A total of 304 papers from 2018 to the present published in registered sites were searched on Google Scalar using "ICT education" as the keyword, and 60 papers pertaining to ICT education were selected based on a systematic literature review. Subsequently, keywords were extracted based on the title and summary of the paper. For word frequency and indicator data, 49 keywords with high appearance frequency were extracted by analyzing frequency, via the term frequency-inverse document frequency technique in natural language processing, and words with simultaneous appearance frequency. The relationship degree was verified by analyzing the connection structure and centrality of the connection degree between words, and a cluster composed of words with similarity was derived via CONCOR analysis. First, "education," "research," "result," "utilization," and "analysis" were analyzed as main keywords. Second, by analyzing an N-GRAM network graph with "education" as the keyword, "curriculum" and "utilization" were shown to exhibit the highest correlation level. Third, by conducting a cluster analysis with "education" as the keyword, five groups were formed: "curriculum," "programming," "student," "improvement," and "information." These results indicate that practical research necessary for ICT education can be conducted by analyzing ICT education trends and identifying trends.

Lane Change Methodology for Autonomous Vehicles Based on Deep Reinforcement Learning (심층강화학습 기반 자율주행차량의 차로변경 방법론)

  • DaYoon Park;SangHoon Bae;Trinh Tuan Hung;Boogi Park;Bokyung Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.276-290
    • /
    • 2023
  • Several efforts in Korea are currently underway with the goal of commercializing autonomous vehicles. Hence, various studies are emerging on autonomous vehicles that drive safely and quickly according to operating guidelines. The current study examines the path search of an autonomous vehicle from a microscopic viewpoint and tries to prove the efficiency required by learning the lane change of an autonomous vehicle through Deep Q-Learning. A SUMO was used to achieve this purpose. The scenario was set to start with a random lane at the starting point and make a right turn through a lane change to the third lane at the destination. As a result of the study, the analysis was divided into simulation-based lane change and simulation-based lane change applied with Deep Q-Learning. The average traffic speed was improved by about 40% in the case of simulation with Deep Q-Learning applied, compared to the case without application, and the average waiting time was reduced by about 2 seconds and the average queue length by about 2.3 vehicles.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET (동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발)

  • Lee, Byeong-Il;Lee, Jae-Sung;Lee, Dong-Soo;Kang, Won-Jun;Lee, Jong-Jin;Kim, Soo-Jin;Choi, Seung-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.486-491
    • /
    • 2004
  • Purpose: factor analysis and independent component analysis (ICA) has been used for handling dynamic image sequences. Theoretical advantages of a newly suggested ICA method, ensemble ICA, leaded us to consider applying this method to the analysis of dynamic myocardial $H_2^{15}O$ PET data. In this study, we quantified patients' blood flow using the ensemble ICA method. Materials and Methods: Twenty subjects underwent $H_2^{15}O$ PET scans using ECAT EXACT 47 scanner and myocardial perfusion SPECT using Vertex scanner. After transmission scanning, dynamic emission scans were initiated simultaneously with the injection of $555{\sim}740$ MBq $H_2^{15}O$. Hidden independent components can be extracted from the observed mixed data (PET image) by means of ICA algorithms. Ensemble learning is a variational Bayesian method that provides an analytical approximation to the parameter posterior using a tractable distribution. Variational approximation forms a lower bound on the ensemble likelihood and the maximization of the lower bound is achieved through minimizing the Kullback-Leibler divergence between the true posterior and the variational posterior. In this study, posterior pdf was approximated by a rectified Gaussian distribution to incorporate non-negativity constraint, which is suitable to dynamic images in nuclear medicine. Blood flow was measured in 9 regions - apex, four areas in mid wall, and four areas in base wall. Myocardial perfusion SPECT score and angiography results were compared with the regional blood flow. Results: Major cardiac components were separated successfully by the ensemble ICA method and blood flow could be estimated in 15 among 20 patients. Mean myocardial blood flow was $1.2{\pm}0.40$ ml/min/g in rest, $1.85{\pm}1.12$ ml/min/g in stress state. Blood flow values obtained by an operator in two different occasion were highly correlated (r=0.99). In myocardium component image, the image contrast between left ventricle and myocardium was 1:2.7 in average. Perfusion reserve was significantly different between the regions with and without stenosis detected by the coronary angiography (P<0.01). In 66 segment with stenosis confirmed by angiography, the segments with reversible perfusion decrease in perfusion SPECT showed lower perfusion reserve values in $H_2^{15}O$ PET. Conclusions: Myocardial blood flow could be estimated using an ICA method with ensemble learning. We suggest that the ensemble ICA incorporating non-negative constraint is a feasible method to handle dynamic image sequence obtained by the nuclear medicine techniques.

A Benchmark of Micro Parallel Computing Technology for Real-time Control in Smart Farm (MPICH vs OpenMP) (제목을스마트 시설환경 실시간 제어를 위한 마이크로 병렬 컴퓨팅 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.161-161
    • /
    • 2017
  • 스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경 내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, $12800{\times}12800$ 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할 수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초 단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.

  • PDF

Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning (머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구)

  • Lee, Gyeong-Geon;Ha, Heesoo;Hong, Hun-Gi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.219-234
    • /
    • 2018
  • In this study, we explored the possibility of automating the process of analyzing elements of scientific argument in the context of a Korean classroom. To gather training data, we collected 990 sentences from science education journals that illustrate the results of coding elements of argumentation according to Toulmin's argumentation structure framework. We extracted 483 sentences as a test data set from the transcription of students' discourse in scientific argumentation activities. The words and morphemes of each argument were analyzed using the Python 'KoNLPy' package and the 'Kkma' module for Korean Natural Language Processing. After constructing the 'argument-morpheme:class' matrix for 1,473 sentences, five machine learning techniques were applied to generate predictive models relating each sentences to the element of argument with which it corresponded. The accuracy of the predictive models was investigated by comparing them with the results of pre-coding by researchers and confirming the degree of agreement. The predictive model generated by the k-nearest neighbor algorithm (KNN) demonstrated the highest degree of agreement [54.04% (${\kappa}=0.22$)] when machine learning was performed with the consideration of morpheme of each sentence. The predictive model generated by the KNN exhibited higher agreement [55.07% (${\kappa}=0.24$)] when the coding results of the previous sentence were added to the prediction process. In addition, the results indicated importance of considering context of discourse by reflecting the codes of previous sentences to the analysis. The results have significance in that, it showed the possibility of automating the analysis of students' argumentation activities in Korean language by applying machine learning.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.