• Title/Summary/Keyword: 행렬 학습

Search Result 183, Processing Time 0.028 seconds

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

Real Time AOA Estimation Using Neural Network combined with Array Antennas (어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.87-91
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

  • PDF

Real Time AOA Estimation Using Analog Neural Network Model (아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발)

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.465-469
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

Development of Journal Recommendation Method Considering Importance of Decision Factors Based on Researchers' Paper Publication History (연구자의 논문 게재 이력을 고려한 저널 결정 요인별 중요도 학습 기반의 저널 추천 방법론)

  • Son, Yeonbin;Chang, Tai-Woo;Choi, Yerim
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.73-79
    • /
    • 2019
  • Selecting a proper journal to submit a research paper is a difficult task for researchers since there are many journals and various decision factors to consider during the decision process. For this reason, journal recommendation services are exist as a kind of intelligent research assistant which recommend potential journals. The existing services are executing a recommendation based on topic similarity and numerical filtering. However, it is impossible to calculate topic similarity when a researcher does not input paper data, and difficult to input clear numerical values for researchers. Therefore, the journal recommendation method which consider the importance of decision factors is proposed by constructing the preference matrix based on the paper publication history of a researcher. The proposed method was evaluated by using the actual publication history of researchers. The experiment results showed that the proposed method outperformed the compared methods.

Effective Recognition of Velopharyngeal Insufficiency (VPI) Patient's Speech Using DNN-HMM-based System (DNN-HMM 기반 시스템을 이용한 효과적인 구개인두부전증 환자 음성 인식)

  • Yoon, Ki-mu;Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • This paper proposes an effective recognition method of VPI patient's speech employing DNN-HMM-based speech recognition system, and evaluates the recognition performance compared to GMM-HMM-based system. The proposed method employs speaker adaptation technique to improve VPI speech recognition. This paper proposes to use simulated VPI speech for generating a prior model for speaker adaptation and selective learning of weight matrices of DNN, in order to effectively utilize the small size of VPI speech for model adaptation. We also apply Linear Input Network (LIN) based model adaptation technique for the DNN model. The proposed speaker adaptation method brings 2.35% improvement in average accuracy compared to GMM-HMM based ASR system. The experimental results demonstrate that the proposed DNN-HMM-based speech recognition system is effective for VPI speech with small-sized speech data, compared to conventional GMM-HMM system.

Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation (심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성)

  • Cho, Dong-Hee;Nam, Yong-Wook;Lee, Hyun-Chang;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.23-29
    • /
    • 2019
  • In this paper, the mood of images was classified into eight categories through a deep convolutional neural network and video was automatically generated using proper background music. Based on the collected image data, the classification model is learned using a multilayer perceptron (MLP). Using the MLP, a video is generated by using multi-class classification to predict image mood to be used for video generation, and by matching pre-classified music. As a result of 10-fold cross-validation and result of experiments on actual images, each 72.4% of accuracy and 64% of confusion matrix accuracy was achieved. In the case of misclassification, by classifying video into a similar mood, it was confirmed that the music from the video had no great mismatch with images.

Analysis of Test Result at Secondary Science Using Cognitive Diagnosis theory (인지 진단 이론을 활용한 중학교 과학 시험 결과의 분석)

  • Kim, Ji-Young;Kim, Soo-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.812-823
    • /
    • 2009
  • The purpose of this study is to search effective assessments methods by using the Fusion model of Cognitive diagnosis theory. Attributes are skills or cognitive processes that are required to perform correctly on a particular item. After test items were developed, item's attributes were decided and Q-matrix about item's attributes was made. After testing, the result was analyzed according to gender and achievement level. The results of the analysis showed that students mastered 'Interpreting data' best, and 'synthesizing' worst among the five attributes. Female students showed higher ability than male students in 'recalling.' Students of high achievement level mastered more scientific attributes than students of low achievement level. Conventional assessments only provided a single summary score but Cognitive diagnosis modeling provided useful information by estimating individual knowledge states by assessing whether an examinee has mastered specific attributes measured by the science test. The skill profiles can offer a skill level of strong, weak, or mixed for each student for each skill. Therefore, the skill profiles will provide useful diagnostic information in addition to single overall scores.

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.

Effectiveness of the Detection of Pulmonary Emphysema using VGGNet with Low-dose Chest Computed Tomography Images (저선량 흉부 CT를 이용한 VGGNet 폐기종 검출 유용성 평가)

  • Kim, Doo-Bin;Park, Young-Joon;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.411-417
    • /
    • 2022
  • This study aimed to learn and evaluate the effectiveness of VGGNet in the detection of pulmonary emphysema using low-dose chest computed tomography images. In total, 8000 images with normal findings and 3189 images showing pulmonary emphysema were used. Furthermore, 60%, 24%, and 16% of the normal and emphysema data were randomly assigned to training, validation, and test datasets, respectively, in model learning. VGG16 and VGG19 were used for learning, and the accuracy, loss, confusion matrix, precision, recall, specificity, and F1-score were evaluated. The accuracy and loss for pulmonary emphysema detection of the low-dose chest CT test dataset were 92.35% and 0.21% for VGG16 and 95.88% and 0.09% for VGG19, respectively. The precision, recall, and specificity were 91.60%, 98.36%, and 77.08% for VGG16 and 96.55%, 97.39%, and 92.72% for VGG19, respectively. The F1-scores were 94.86% and 96.97% for VGG16 and VGG19, respectively. Through the above evaluation index, VGG19 is judged to be more useful in detecting pulmonary emphysema. The findings of this study would be useful as basic data for the research on pulmonary emphysema detection models using VGGNet and artificial neural networks.