• Title/Summary/Keyword: 행동패턴분석

Search Result 469, Processing Time 0.035 seconds

Behavior Pattern Analysis Algorithm Based on User Profile in Smart Home Network (스마트 홈 네트워크에서 사용자 프로파일에 기반한 행동 패턴 분석 알고리즘)

  • Kang, Won-Joon;Shin, Dong-Kyoo;Shin, Dong-Il
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.53-54
    • /
    • 2009
  • 본 논문은 홈 네트워크 시스템에서 사용자 프로파일을 기반으로 거주자의 행동패턴을 예측하고 분석하는 BPP(Behavior Pattern Prediction) 알고리즘을 제안한다. BPP 알고리즘은 거주자가 어느 방에 자주 방문하고, 어떤 행동을 자주 반복 하는지 파악을 하여 사용자 프로파일을 구축한다. 그리고 사용자가 머물렀던 방에 대한 관심을 객관적으로 측정하기 위해 거주지 사용자의 흥미에 대해서 가중치(weight)를 부여 한다. 사용자의 프로파일로부터 얻어진 데이터에 근거를 둔 가중치가 높을수록 사용자의 행동과 방에 대한 연관성이 높다는 것을 나타낸다. BPP 알고리즘의 특징은 시간대 별로 가중치를 측정하여 사용자의 다음 행동을 예측하고, 객관적으로 사용자의 행동 패턴을 분석한다.

Analysis and Summary of User's Behavior Patterns in Mobile Devices (모바일 디바이스 사용자의 행동 패턴 분석 및 요약)

  • Jung Myung-Chul;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.148-150
    • /
    • 2006
  • 최근 모바일 디바이스의 기능이 다양해지면서 현대인에게 없어서는 안 될 필수품이 되었다. 모바일 디바이스의 사용영역이 널어지면서 늘어나는 개인 정보의 활용에 대한 관심이 집중되고 있다. 본 논문에서는 모바일 디바이스에서 사용자의 행동 패턴 분석 및 요약을 위한 지능형 에이전트를 제안한다 사용자의 다양한 행동 및 상태 패턴 분석을 위해 협력적 모듈 베이지안 네트워크를 사용한다. 협력적 모들 베이지안 네트워크는 비슷한 유형의 패턴끼리 모듈로 설계해 상호 협력적으로 작동하여 사용자의 특이성을 추론한다. 사용자에 기억에 남을 만한 특이성를 선택하기 위해 Noisy-OR gate를 적응하여 계산한 특이성간의 연결 강도와 특이성의 우선순위를 바탕으로 사용자의 하루 동안의 행동을 요약하여 구성한다. 추론을 위한 프로토타입을 작성하고 시나리오를 바탕으로 제안한 방법의 유용성을 보인다.

  • PDF

Exploratory Approach of Social Gameplay Behavior Pattern : Case Study of World of Warcrafts (소셜 게임플레이 행동패턴의 탐색적 접근 : World of Warcrafts를 중심으로)

  • Song, Seung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.37-47
    • /
    • 2013
  • The objective of this research is to discover the rule of gameplay related to the task interdependence to analyse the behavior pattern of social gameplay. Previous literatures related to the gameplay were reviewed and game which was suitable for the gameplay of the task interdependence was selected. A party-play includes a team of five people in the experiment during the gameplay with think-aloud method and video/audio data about action protocol and verbal report were collected. The video observation and protocol analysis were conducted to analyse data. The objective coding scheme were developed from consolidated sequence model task analysis. The player's behavior was analysed. The result was revealed that four rules and four modified rules were included into the total eight behavior pattern. A behavior graph integrated with five gameplay was written. The excellent cooperative spot and error and failure place could be identified. The social gameplay behavior graph is expected to be the key practical design guideline on whether the level design and balance design are proper.

A Study on the Development of Autonomous Mobile Environmental Sensors and Livestock Behavior Analysis for Situation Awareness in Smart Barns (스마트 축사내 상황인지 자율이동형 환경센서 개발 및 가축행동 분석에 관한 연구)

  • Suk-Hun Kim;Nam-Ho Kim
    • Smart Media Journal
    • /
    • v.13 no.10
    • /
    • pp.35-42
    • /
    • 2024
  • This study aims to develop a system that predicts the health status of cattle based on behavior patterns and environmental data within a smart barn using an autonomous driving system. Maintaining a unique ID for each cow using only a camera, without external devices (such as RFID tags), is essential. This enables the tracking of behavior patterns such as standing, sitting, and lying for each cow over time. Additionally, environmental data such as temperature and humidity are integrated to comprehensively assess the cows' health conditions. To achieve this, we propose a unique ID retention algorithm that combines object detection using YOLO, tracking with Deep SORT, and re-identification (ReID). Experimental results show that the YOLO + Deep SORT + ReID algorithm delivers the best performance in maintaining unique IDs, and the LSTM-based behavior analysis model demonstrates high accuracy in predicting behavior patterns. This system can serve as an effective tool for real-time prediction of livestock health conditions, such as disease or stress, through comprehensive analysis of environmental data and behavior patterns inside the barn.

A Study on Abnormal Behavior Analysis and Pattern Prediction using Bigdata (빅데이터기반 이상행동 분석 및 패턴예측 모델 연구)

  • Jung, Yu-Jin;Yoon, Young-Ik
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.724-726
    • /
    • 2014
  • 본 논문에서는 범죄 발생 전 빠른 상황판단과 효과적인 의사결정을 위한 방법으로 이상 행동을 분류, 분석하여 이상행동 패턴을 발견하고 이에 따라 발생 전 상황을 예상할 수 있는 예측하는 모델을 제시하였다. 이러한 행동분석과 패턴예측 모델은 CCTV로 부터 수집된 데이터를 단계별 DB를 통해 빠르고 정확한 분석할 수 있고, 과거에 축적 및 분석된 데이터를 유사한 상황에 직면했을 때 사전에 예방하기 위한 유용한 도구로 활용이 가능할 것이다.

Behavior Pattern Analysis System based on Temporal Histogram of Moving Object Coordinates. (이동 객체 좌표의 시간적 히스토그램 기반 행동패턴분석시스템)

  • Lee, Jae-kwang;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.571-575
    • /
    • 2015
  • This paper propose a temporal histogram -based behavior pattern analysis algorithm to analyze the movement features of moving objects from the image inputted in real-time. For the purpose of tracking and analysis of moving objects, it needs to be performed background learning which separated moving objects from the background. Moving object is extracted as a background learning after identifying the object by using the center of gravity and the coordinate correlation is performed by the object tracking. The start frame of each of the tracked object, the end frame, the coordinates information and size information are stored and managed by the linked list. Temporal histogram defines movement features pattern using x, y coordinates based on time axis, it compares each coordinates of objects for understanding its movement features and behavior pattern. Behavior pattern analysis system based on temporal histogram confirmed high tracking rate over 95% with sustaining high processing speed 45~50fps through the demo experiment.

  • PDF

The Game Optimization using the Action Patterns of Monster in Mobile Arcade Game (모바일 아케이드 게임에서 몬스터 행동 패턴을 이용한 게임 최적화)

  • Kim, Young-Back;Chung, Kyung-Ho;Ahn, Kwang-Seon;Kim, Jae-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.103-114
    • /
    • 2007
  • In an arcade game, the users can easily predict the monster's action because most of the game monster's action patterns are acted only in the predefined patterns, This paper attempts how to increase the player's satisfaction while making the unpredictable action patterns easily, This research defines and realizes the monster's action patterns through the FSM algorithm. In addition, this paper added the predictable factors of monsters in an action patterns of a game monster to optimize the game, On analyzing the result of game play, the game monster's action was evenly used in the whole playing map and the game monster showed that it operated without the recursion of certain action properly.

  • PDF

A Design of Behavior Classification Model for Pet Healthcare (반려동물 헬스케어를 위한 행동 분류 모델 설계)

  • Hyuksoon Choi;Minseo Kim;Nammee Moon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.655-656
    • /
    • 2023
  • 반려동물 웨어러블 시장의 성장함에 따라 반려동물의 행동 패턴을 측정하고 분석할 수 있는 센서데이터가 활용되고 있다. 본 논문에서는 반려동물 수면 패턴 모니터링을 위한 행동 분류 모델을 제안한다. 6축 센서 데이터를 활용한 가속도 및 자이로센서 데이터를 입력 데이터로 사용한다. 제안된 모델은 ResNet을 통해 시간에 따라 가속도 및 자이로센서 데이터의 특징을 추출한 후 LSTM을 사용하여 시계열 정보를 고려한 행동 분류를 수행한다. 이러한 과정을 통해 정확한 행동 패턴 분석이 가능하게 되며 반려동물의 건강 관리 및 수면 질 개선에 기여할 것으로 기대한다.

Implementation of Sequential Pattern Mining algorithm For Analysis of Alert data. (경보데이터 패턴분석을 위한 순차패턴 알고리즘의 구현)

  • Ghim, Hohn-Woong;Shin, Moon-Sun;Ryu, Keun-Ho;Jang, Jong-Soo
    • Annual Conference of KIPS
    • /
    • 2003.05c
    • /
    • pp.1555-1558
    • /
    • 2003
  • 침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입의 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 필요로 하는 시스템이 요구되고 있다. 이에 대용량의 데이터를 분석하여 의미 있는 정보를 추출하는 데이터 마이닝 기법을 적용하여 지능적이고 자동화된 탐지 및 경보데이터 분석에 이용할 수 있다. 마이닝 기법중의 하나인 순차 패턴 탐사 방법은 일정한 시퀸스 내의 빈발한 항목을 추출하여 순차적으로 패턴을 탐사하는 방법이며 이를 이용하여 시퀸스의 행동을 예측하거나 기술할 수 있는 규칙들을 생성할 수 있다. 이 논문에서는 대량의 경보 데이터를 효율적으로 분석하고 반복적인 공격 패턴에 능동적인 대응을 위한 방법으로 확장된 순차패턴 알고리즘인 PrefixSpan 알고리즘에 대해 제안하였고 이를 적용하므로써 침입탐지 시스템의 자동화 및 성능의 향상을 얻을 수 있다.

  • PDF

Design and Implementation of Web Analyzing System based on User Create Log (사용자 생성 로그를 이용한 웹 분석시스템 설계 및 구현)

  • Go, Young-Dae;Lee, Eun-Bae
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.264-267
    • /
    • 2007
  • 인터넷 사이트가 증가하면서 서비스 제공자는 사용자의 요구나 행동패턴을 파악하기 위하여 웹 마이닝 기법을 활용한다. 하지만 서버에 저장된 웹 로그 정보를 활용한 마이닝 기법은 전처리 과정에 많은 노력이 필요하고 사용자의 행동패턴이나 요구를 정확하게 파악하는데 한계가 있다. 이를 극복하기 위해 본 논문에서는 사용자 생성 로그정보를 이용한 방법을 제안한다. 제안 방법은 기존 서버에 저장되는 로그파일이 아닌 사용자의 행동에 의해 웹 페이지가 로딩될 때 마다 웹 마이닝에 필요한 정보를 수집하여 DB 에 저장하는 방법을 사용하였다. 이때 기존 로그파일에 로딩시간과 조회시간, 파라메타 정보를 추가하여 보다 사실적으로 사용자의 행동패턴을 파악하고자 하였다. 이렇게 생성된 로그파일을 기 등록된 메뉴정보, 쿼리정보와 조합하면 웹 마이닝에 필수적인 데이터정제, 사용자식별, 세션식별, 트랜잭션 식별등 전처리 과정의 효율성을 향상시키고 사용자의 행동패턴파악을 위한 정보 수집을 용이하게 해준다.