• 제목/요약/키워드: 핵종생산시스템

검색결과 10건 처리시간 0.032초

양성자 빔을 이용한 의료용 방사성동위원소 C-11과 Tc-99m 개발

  • 김재홍;이지섭;박형;전권수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.235-235
    • /
    • 2011
  • 진단용 또는 의료용 동위원소들은 안정한 표적물질에 높은 에너지의 양성자가 조사 될 때 핵반응에 의해서 생성된다. 양성자를 충분한 에너지로 가속하기 위해서 이용되는 사이클로트론의 주요 부분은 (1) 진공시스템, (2) 자석시스템, (3) RF 시스템, (4) 외부 이온원, (5) 수직 축 방향빔의 수평방향 전환 시스템, (6) 빔 인출 장치, 그리고 빔전송과 표적장치로 구성된다. 인출된 빔은 표적까지 손실 없이 전송 될 수 있도록 빔 라인에 설치된 광학적 요소에 의해 집속되어 전송된다. 방사성동위원소의 생산량은 양성자 빔의 특성과 표적 물질의 종류에 따라 결정된다. 즉, 표적 물질에 조사하는 입자의 종류, 적절한 핵반응 선택, 최소량의 불순핵종과 원하는 방사핵종의 최대수율을 얻을 수 있는 최적 에너지 범위결정, 표적 물질의 냉각능력과 입자전류의 세기 등을 고려 하여야 한다. 동위원소 생산에 있어서 예측되는 수율은 입자전류와 비례하며, 에너지에 대한 핵반응 단면적 즉, 여기함수를 적분하여 아래와 같이 얻을 수 있다. 주 생성핵종의 생산 효율을 최대로 높이고 불순 핵종의 생성량을 최소로 감소시키기 위해서는 정확한 여기 함수 자료를 바탕으로 최적 입자를 결정하여야 한다. 또한 이론적인 생산 수율은 입자 전류에 정비례하지만, 입자 전류가 클경우 생산수율은 이론적인 수율보다 적다. 입자빔의 불균일성, 표적의 방사선 피폭에 의한 손상, 높은 입자전류에 의해 발생하는 열로 인하여 생성 핵종이 증발하여 생산 수율이 감소된다. 본 발표에서 방사핵종 C-11과 Tc-99m을 개발하기 위한 최적 조건에 관한 연구결과를 보고하고자 한다.

  • PDF

I-123 핵종생산장치 시스템 설계 (Design of I-123 Nuclide Production System)

  • 정현우;유재준;김병일;이동훈
    • 한국정보통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1462-1468
    • /
    • 2014
  • 30MeV 사이클로트론의 양성자가 Xe-124 기체 표적 시스템에 조사될 때 일어나는 핵반응을 적용하여 Xe 가스를 GPM으로부터 타겟으로 전송하는 시스템을 설계하였다. 시스템 설계는 크게 4파트로 구성되며 각각의 하드웨어 부분은 솔리드웍스 3-D 캐드를 이용하여 설계하였다. 타겟 시스템 중 헬륨으로 Havor foil을 냉각시키게 설계했고, 타겟 내 Xe 가스가 양성자로 조사 시 상승하는 타겟 온도를 냉각수로 냉각시켜주도록 설계하였다. 또한, 온도센서와 압력센서를 장착하여 타겟 내의 온도와 압력을 확인할 수 있도록 구성 하였다. GPM은 Xe 가스를 타겟으로 운반, 준비하는 부분이며 Xe 가스를 저장하는 부분과 불순물을 제거하는 부분으로 구성되어 있다. HCS는 헬륨을 이용하여 각 파트를 세척하고 냉각시켜 주는 부분이며, 각각의 장치들은 PLC로 제어하여 유지보수시의 편리성을 추구하였고 PC Vue 모니터링 프로그램을 사용하여 SIEMENS PLC와 인터페이스 하여 시스템을 보다 안전하고 편리하게 감시하도록 구성하였다.

고준위폐기물 처분장의 완충재용 국내산 벤토나이트의 특성 측정 (Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository)

  • 유맑고밝게빛나라;최희주;이민수;이승엽
    • 방사성폐기물학회지
    • /
    • 제14권2호
    • /
    • pp.135-147
    • /
    • 2016
  • 심지층 처분시스템에서 완충재는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하기 위한 중요한 방벽의 하나이다. 이에 완충재는 장기 건전성, 낮은 수리전도도, 낮은 유기물의 함량, 높은 핵종저지능, 높은 팽윤성, 높은 열전도도 등 기술적 요건을 충족시켜야 하며 이는 정량적 분석결과를 바탕으로 결정될 수 있다. 국내의 경우 한국원자력연구원에서는 1997년부터 경주지역에서 생산되는 벤토나이트를 완충재 후보물질로 연구를 지속하고 있다. 본 논문에서는 최근 동일 지역에서 생산된 벤토나이트(KJ-II)의 7가지 물리적 및 화학적 특성을 평가하였다. 분석 결과, 국내산 벤토나이트의 몬모릴로나이트 함량은 약 65% 정도이며, 벤토나이트는 Ca형 벤토나이트이다. 본 논문을 통해 완충재 후보물질의 성능평가 항목과 분석 방법에 대한 기준을 제시하고자 하였다.

AMBIDEXTER 천이노심 설계최적화를 위한 노심관리 알고리즘 개발 (Development of a Core management Algorithm for Optimal Design of AMBIDEXTER Transient Cores)

  • 유극종;신동훈;소순규;이영준;김진성;오세기
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.99-100
    • /
    • 2004
  • AMBIDEXTER-NEC의 천이노심은 $^{Nat}Th$$^{Nat}U$의 주입만으로 전 출력의 Break-even 노심에 도달하기위한 중간 단계이다. 선행연구에서 수행한 전 출력노심인 평형노심의 핵종수밀도에 도달하기 위해서 평형노심에서의 기저물질, 잠재핵분열성물질, 핵분열물질의 수밀도를 각 SEU-기반, Pu-기반, ADS-기반에서 그대로 유지하여 초기노심을 구성하였다. 또 각 시나리오에 대해 최대첨두출력과 원자로의 안전성을 고려해 Excess Reactivity를 5mk 내에서 초기노심을 결정하였다. 각 노심은 주 핵분열성물질 $^{235}U$, $^{239}Pu$$^{233}U$의 핵반응단면적 특성에 따라 평균 전환율이 각각 0.95, 0.83 및 1 .21 로서 핵연료물질의 적절한 선택만으로도 전환로, 연소로 및 증식로로 설계할 수 있음을 보여준다. 이러한 $Th/^{233}U$, U/Pu 핵연료주기를 사용하는 AMBIDEXTER-NEC 용융염핵연료 원자로의 초기노심에서 시작한 천이노심은 평형노심에장전할 충분한 $^{233}U$ 양을 확보해야 하므로 천이노심의 목표는 평형노심 $^{233}U$의 요구량에 최소한의 기간에 가장 적은 외부주입을 통해 도달하는 것이다. 천이노심에서 임계가 유지되는 AMBIDEXTER-NEC 원자로시스템의 3군 핵종변환 코드인 HELIOS-SQUID-AMBIBURN 체제를 개발하였고 그림 1.에 나타내었다. 이 알고리즘은 각 초기노심 중원소의 미시단면적, 중원소를 제외한 원소들의 거시단면적, 임계도를 만족하는 중성자속 및 외부주입율을 계산하여 SQUID 및 AMBIBURN 입력자료를 제공한다. 또한 일정시간 중원소의 핵종농도, 외부주입율과 중성자속이 일정하다는 가정 하 에 반복수행 하고 SEU-기반과 Pu-기반의 경우에는 각각 핵변환을 거쳐 재순환되는 $^{233}U$$^{239}Pu$의 양을 바로 주입하는 최대재순환 경우와 평형노심 요구 장전량에 이를 때까지 시설 내 저장하는 최소재순환 경우로 상황을 모사하였다. 그림 2 는 각 시나리오별 초기노심에서부터 200FPD까지 단위 용융염 체적당 $^{233}U$의 수밀도 시간변화를 나타낸 것이다. 그림을 보면 50일 이후부터는 수밀도의 변화가 일정한 기울기를 보이고 있고 재처리공정에서 $^{233}Pa$를 분리하는 최소재순환의 경우에는 최대재순환보다 2-3%정도에 지나지않아 그림에서 나타내지않았다. SEU-기반 및 Pu-기반에서 $^{233}U$의 증가율이 각각 2.54E+13, 2.81E+13 #/cc/d 로 Pu 기반이 조금 더 큰 증가율을 나타내고 있지만 평형노심 농도 1.04E+20 #/cc/d 에 도달하기 위해서는 두 경우 모두 매우 긴 시간이 걸릴 것을 예상할 수 있다. 요컨대 250MWth AMBIDEXTER-NEC가 평형노심을 이루기 위해 필요로 하는 $^{233}U$을 생산하는데 제안한 SEU-기반, Pu-기반 시나리오는 천이노심주기기간이 전형적인 원자로 수명 3-40년 보다 매우 큰 것으로 나타났다. 따라서 장전될 $^{233}U$의 확보를 위한 최적옵션은 초기노심부터 ADS와 같은 외부생산시설로부터 전량을 공급 받아 운전하는 것이라 판단된다.

  • PDF

방사성동위원소 열전 발전기 최적설계를 위한 차폐 및 열전달 해석 (Heat Transfer and Radiation Shielding Analysis for Optimal Design of Radioisotope Thermoelectric Generator)

  • 손광재;홍진태;양영수
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1567-1572
    • /
    • 2013
  • 방사성동위원소 열전발전기는 장반감기 알파 혹은 베타 핵종에서 방출하는 하전입자를 차폐하여 방사선에너지를 열에너지로 전환하고 이때 발생하는 열전재료의 온도차를 이용하여 전력을 생산하는 시스템이다. 이 기술은 에너지 밀도가 높고 수명이 길며 신뢰성이 높아 우주개발, 국방 등 극한 환경에서 사용되는 장치, 센서 및 로봇 등의 에너지원으로 그 효용성이 매우 높다. 본 연구에서는 방사선 차폐해석 및 열전달 해석을 통하여 차폐체, 그리고 최대 온도구배를 가지는 열전재료의 형상과 배치를 결정하여 열전발전기 기초설계를 도출하였다.

I-123 핵종생산장치 시스템 설계 (Design of I-123 Nuclide production system)

  • 정현우;유재준;김병일;전권수;이지섭;박현;최준용;오세영;방상권;이동훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.496-499
    • /
    • 2014
  • 30MeV Cyclotron의 양성자가 Xe-124 기체 표적 시스템에 조사될 때 가능한 핵반응을 적용하여 Xe Gas를 GPM으로부터 Target으로 까지 전송하는 시스템을 설계하고 제작하였다. 시스템 설계는 크게 4파트로 나누어 설계하였다. 각각의 하드웨어 부분은 솔리드웍스를 이용하여 설계하였다. Target은 헬륨으로 Havor Foil을 쿨링시키게 설계했고 물은 타겟에 들어간 Xe Gas를 조사 시 높아지는 온도를 식혀주는 역할을 하게 제작하였고 온도센서와 압력센서를 장착하여 눈으로 확인할 수 있게 제작하였다. GPM(Gas Process Manifold)은 Xe Gas를 운반하도록 준비하는 부분이며 Xe Gas를 담고있는 부분과 불순물을 제거하는 부분이 있다. HCS(Helium Circulation System)은 헬륨을 이용하여 각파트를 클리닝 하고 냉각시켜 준다. 이러한 각 부분들을 PLC로 제어하게 하여 유지보수시의 편리성을 추구하였고 PC Vue를 사용하여 SIEMENS PLC를 더욱더 안전하게 인터페이스하게 하였다.

  • PDF

온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가 (An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation)

  • 윤석;전준서;고규현;김건영
    • 한국지반공학회논문집
    • /
    • 제36권10호
    • /
    • pp.33-39
    • /
    • 2020
  • 심층 처분 방식은 고준위폐기물을 처분하기 위한 가장 적합한 대안으로 고려되어지고 있다. 고준위폐기물은 공학적방벽시스템에 의해 지하 500~1,000m 깊이의 암반층에 처분된다. 공학적방벽시스템의 구성 요소로는 처분용기, 완충재, 뒷채움재 및 갭채움재가 있다. 이 중 벤토나이트 완충재는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하는 역할을 하기에 심층 처분시스템에 있어 매우 중요하다고 할 수 있다. 초기에는 처분용기로부터 발생하는 고온의 열량으로 인해 완충재의 포화도는 감소하지만, 그 후 주변 암반으로부터 유입되는 지하수로 인해 완충재의 포화도는 증가한다. 이렇듯 완충재의 불포화 거동 특성은 공학적방벽의 전체 안전성을 좌우할 수 있는 중요한 입력자료이다. 국내의 경우 경주에서 생산되는 벤토나이트가 완충재의 주요 후보물질로 고려될 수 있는데 국내 벤토나이트 완충재의 온도를 고려한 불포화 거동 특성에 대한 연구는 매우 미진한 상황이다. 따라서 본 연구에서는 국내 압축 벤토나이트 완충재의 온도 증가에 따라 함수비가 일정한 조건에서의 함수특성곡선을 도출하였으며, 시험 값과 온도가 고려된 수정 van-Genuchten 모델 값과의 상대오차는 약 2%를 나타냈다.

기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가 (Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method)

  • 윤석;방현태;김건영;전해민
    • 대한토목학회논문집
    • /
    • 제41권2호
    • /
    • pp.123-131
    • /
    • 2021
  • 완충재는 고준위 방사성 폐기물을 처분하기 위한 공학적 방벽 시스템에서 중요한 구성요소 중 하나이며 사용 후 핵연료가 담긴 처분용기와 암반사이에 채워지는 물질이기 때문에 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하는 중요한 역할을 수행한다. 따라서 공학적 방벽 시스템의 처분용기로부터 발생하는 고온의 열량은 완충재를 통하여 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 매우 중요하다. 본 연구에서는 국내에서 생산되는 압축 벤토나이트 완충재의 열전도도 예측을 위한 경험적 회귀 모델의 정합성을 검증하고 정확도를 높이기 위해 예측모델의 구축에 기계학습법을 적용해 보았다. 벤토나이트의 건조밀도, 함수비 및 온도 값을 바탕으로 열전도도를 예측하고자 하였으며, 이때 다항 회귀, 결정 트리, 서포트 벡터 머신, 앙상블, 가우시안 프로세스 회귀, 인공신경망, 심층 신뢰 신경망, 유전 프로그래밍과 같은 기계학습 기법을 적용하였다. 기계학습 기법을 이용하여 예측한 결과, 부스팅 기반의 앙상블 기법, 유전 프로그래밍, 3차 함수 기반의 SVM, 가우시안 프로세스 회귀의 기계학습기법을 활용한 모델이 선형 회귀 분석 기법에 비해 좋은 성능을 보였으며, 특히 앙상블의 부스팅 기법과 가우시안 프로세스 회귀 기법을 사용한 모델들이 가장 좋은 성능을 보였다.

고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구 (A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica)

  • 이길용;윤윤열;조수영;양명권;심상권;김용제;정용삼
    • 분석과학
    • /
    • 제18권1호
    • /
    • pp.5-12
    • /
    • 2005
  • 고정밀 전자소자의 오동작의 한 원인인 soft error는 원료물질에 함유된 U, Th과 같은 알파방출 불순물로 알려져 있으며 전자소자의 소형화, 고집적화에 따라서 이들 불순물의 규제함량은 기존의 분석법으로는 불가능할 정도로 낮아지고 있다. 연구의 목적은 다양한 전자소자의 밀봉소재로 사용되는 EMC (epoxy molding compound)의 주 원료인 고순도 실리카에 함유되어 있는 U, Th을 고감도 (ng/g이하)로 분석할 수 있는 방사화분석법과 감마선분광분석법의 개발이다. 지금까지 방사화분석법에 이용하던 PTS (pneumatic transfer system) 중성자 조사 설비로는 산업계에서 요구하는 분석 감도를 충족시킬 수 없기 때문에 의약용 혹은 산업용 RI 생산에 주로 사용되고 있는 HTS (Hydraulic transfer system) 중성자 조사 설비를 이용한 방사화분석 조건을 확립하였다. 또한, 공기중 라돈 ($^{222}Rn$)과 자핵종 (progenies)에 의한 불안정한 바탕방사능은 분석의 감도는 물론 정확도를 저하시키는 주 요인으로 작용하므로 질소가스 유입시스템을 제작하여 라돈에 의한 바탕방사능을 소멸 혹은 안정화시켰다. 그 결과 U과 Th의 분석한계를 각각 0.1 ng/g, 0.01 ng/g까지 낮출 수 있었다.

파이로프로세싱을 위한 전해환원 공정기술 개발 (Electrochemical Reduction Process for Pyroprocessing)

  • 최은영;홍순석;박우신;임현숙;오승철;원찬연;차주선;허진목
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.279-288
    • /
    • 2014
  • 원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다. 파이로프로세싱의 전단부에 해당하는 전해환원 공정은 산화물 형태의 사용후핵연료를 금속으로 전환시켜 후속 공정인 전해정련공정에 금속을 공급하는 역할을 한다. 파이로프로세싱을 위한 전해환원 공정의 상용화를 위해서는 고용량, 고효율의 시스템 개발이 요구되므로 양극과 음극에서 공정 속도의 영향을 미치는 인자를 연구하였다.