• Title/Summary/Keyword: 핵연료봉 다발

Search Result 31, Processing Time 0.029 seconds

중수감속 가압경수로의 개념설계

  • 김명현;윤진규
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.112-116
    • /
    • 1996
  • 신형경수로의 대안으로서 가압경수로의 단점을 보완하고, 가압중수로의 장점을 채택한 중수감속 경수로의 핵적 개념설계를 제안하였다. 냉각재와 감속재가 서로 다른 채넬을 통해 흐르는 기존 가압중수로의 Pressure-Tube 설계의 장점을 채택하여, 냉각재는 경수를 감속재는 중수를 사용하는 중수감속 가압경수로(DPWR, Deuterium-moderated PWR)의 설계 타당성을 검토하였다. 기본적으로 CANDU의 system설계를 Proven Technology로서 가능한 많이 채택하고, CANFLEX 핵연료 설계도 기존 연구 결과로서 최대한 활용하였다. 월성 2,3,4호기 FSAR의 사양을 그대로 사용하여 기존 중수로의 37봉 핵연료 다발을 6$\times$6 직각 배열 등가 핵연료집합체로 재구성한 후, SEU $UO_2$ 핵연료에 대해 HELIOS코드를 사용하여 핵적 특성을 검토하였다. 냉각재 온도계수가 음의 안전성을 갖고 있으며, 기존 중수로보다 연소도가 훨씬 큰 원자로가 설계될 수 있음을 확인하였다. 또한 발전소 이용률의 증대, 사용후 핵연료 발생량의 감소를 기대할 수 있었다.

  • PDF

Turbulent Heat Transfer with Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 혼합날개에 의한 난류열전달 해석)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.9-14
    • /
    • 2007
  • The purpose of present work is to analyze the convective heat transfer downstream of mixing vane in subchannel of nuclear reactor with three-dimensional Navier-Stokes equations. SST model is selected as a turbulence closure by comparing the performances of two different turbulent closures. Three different shapes of mixing vane are tested. And, thermal-hydraulic performances of these vanes are discussed. The results show that twist of the vane improves the heat transfer performance far downstream of the vane.

Shape Optimization of A Twist Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 비틀린 혼합날개의 형상최적설계)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

SHAPE OPTIMIZATION OF A Y-MIXING VANE IN NUCLEAR FUEL ASSEMBLY (핵연료 봉다발내 Y 혼합날개의 형상최적설계)

  • Jung, S.H.;Kim, K.Y.;Kim, K.H.;Park, S.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane taken tolerance into consideration by using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of pressure drop. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

Measurements of Turbulent How in $5\times{5}$ PWR Rod Bundles With Spacer Grids (지지격자를 갖는 $5\times{5}$ PWR 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.263-273
    • /
    • 1992
  • The study on the velocity distribution and the pressure drop characteristic of the nuclear fuel assembly is of importance for the thermal hydraulic design and safety analysis. The purpose of this experimental study is to investigate the hydraulic mixing behind the different kinds of spacer grids in the now or rod bundles. In this study, the detailed hydraulic characteristics in subchannels of 5$\times$5 PWR(Pressurized Water Reactor) rod bundles were measured using one-component He-Ne LDV(Laser Doppler Velocimeter). Measurements of the axial velocity, turbulent intensities and pressure drops were peformed Lateral velocity, turbulent intensities and Reynolds shear stress were also measured by adjust-ing LDV alignment. Friction factors in rod bundles and loss coefficients for spacer grids were evaluated from the measured pressure drops. Hydraulic mixing performance for different kinds of spacer grids could be investigated by estimating the turbulent cross-flow mixing rates between neighboring subchannels.

  • PDF

Spacer Grid Effects on Turbulent Flow in Rod Bundles (지지격자가 봉다발 난류유동에 미치는 영향)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.56-71
    • /
    • 1996
  • The local hydrulic characteristics in subchannels of 5$\times$5 nuclear fuel bundles with spacer grids were measured at upstream and downstream of the spacer grid for the investigation of the spacer grid effects on turbulent flow structure by using an LDV(Laser Doppler Velocimeter). The measured parameters are axial velocity and turbulent intensity, skewness factor, and flatness factor. Pressure drops were also measured to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. From these data, it was found that the turbulent mixing and forced mixing occur up to $x/D^h=10$ and 20 from the spacer grid, respectively. The turbulence decay behind spacer grid behaves in the similar decay rate as turbulent flow through mesh grids or screens. Mixing factors useful in subchannel analysis code were correlated from the data and show the highest value near spacer grid and then have a stable values.

  • PDF

A Study on the Local Boiling of the Consolidated Spent Fuel Storage Pool (조밀화된 사용후 핵연료 저장조에서의 국부 비등에 관한 연구)

  • Lee, Chang-Ju;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-19
    • /
    • 1993
  • The natural convection model of the consolidated system has been developed to make sure the removal of decay heat generated in the spent fuel for the loss of forced cooling accident. The numerical technique employed was based on the ADI scheme. The calculation of heat generation rate in the spent fuel was peformed by the ANS-79 decay heat model, and the nonuniform surface heat flux is assumed with a chopped sine curve for the conservative decay heat generation input. The sensitivity study was performed to examine the possibility of the pool bulk boiling by varying the various parameters, i.e. inter-fuel spacing ratio, heat generation power, and radius of the fuel rod. The application results of this model show that the natural circulation flow through compacted spent fuel bundles enables the pool temperature to control in a safe and effective manner, after the required cooling time. The corresponding acceptance criteria of the cooling time for rearranging the spent fuel rods were also found.

  • PDF

A Preliminary Study on Measuring Void Fraction in a Fuel Rod Assembly by using an X-ray Imaging System (X선 영상 장치를 이용한 핵연료 집합체 내 기포율 측정을 위한 선행 연구)

  • Lee, Sun-Young;Oh, Oh-Sung;Lee, Se-Ho;Lee, Seung-Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.571-578
    • /
    • 2017
  • Bubbles are generated by the boiling of the cooling water when an accident occurs in the reactor and then in order to measure the void fraction, the Optical Fiber Probe(OFP) and optical camera are used in thermal hydraulic safety research. However, such an optical method is not suitable for measuring the void fraction in a $17{\times}17$ array of fuel rods due to the geometrical limitations. This study was conducted as a preliminary study using x-ray system and various phantoms before applying to rod bundles. Through radiographic and tomographic experiments, the tube voltage of the x-ray generator was 130 kVp and the tube current was 1 mA. In addition, it is possible to measure the hole of 1mm in size visually through the bubble resolution phantom, and it is confirmed that the contrast is relatively decreased in the inside of the freon in the case of the contrast evaluation using the road phantom. However, we could obtain good image without distortion when reconstructing the image. Bubble generation phantom experiments were used to confirm the flow direction of the bubbles and to acquire tomography images. The image J tool was used to measure the void fraction of 18 % for a single tomography image. This study has carried out previous researches for the measurement of the bubble rate around the nuclear fuel and could be used as a basic research for continuous research.

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.