• Title/Summary/Keyword: 해체 데이터베이스 시스템

Search Result 15, Processing Time 0.02 seconds

Construction Materials Management System Based on Web Database (웹 데이터베이스 기반의 건축자재 관리 시스템)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.195-200
    • /
    • 2017
  • Due to the rapid development of Internet technology, qualities of Web services are steadily improving and the Web database systems are actively employed to efficiently manage proper informations in various fields. In this paper, we propose a Web database system for the efficient material management for reusing construction materials. The proposed Web-based management system is operated using the spring framework, after constructing a database based on the collected data including tag ID, Location, Material, State, and Cycle, using the RFID(: Radion Frequency IDentification) system equipped with a location estimation module. Recently, the processing problem for a large amount of the residues generated at the demolition stage of various buildings is magnified in the construction site. The proposed Web-based construction material management system is expected for improving the processing problem as increasing the reusability and for reducing the construction cost as efficiently managing the construction materials for the reuse.

Design Approach of Concrete Structures Considering the Targeted CO2 Reduction (목표 탄소배출량 저감을 고려한 콘크리트 구조물의 설계 절차)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • The objective of this study is to present the design approach of low $CO_2$ concrete structures for reduction of $CO_2$ emissions. The design approach was implemented considering the system boundary for each processing presented in the ISO 13315-2. As for life-cycle inventory(LCI) for $CO_2$ assessment of concrete structures, data provided from domestic LCI DB was used. Based on the process presented in this study, case studies on the life-cycle $CO_2$ assessment of shear wall concrete structure was conducted. As substitution level of GGBS is 25%, the amount of $CO_2$ emissions and $CO_2$ uptake by concrete carbonation was decreased in the material, demolition and crushing, and transport phase. The amount of $CO_2$ emissions of column and total member was decreased by 26% and 22% respectively, compared to that of OPC.

Estimation of Dynamic Characteristics Before and After Restoration of the Stone Cultural Heritage by Vibration Measurement (진동 측정에 의한 석조문화재 복원 공사 전·후의 동특성 추정)

  • Choi, Jae-Sung;Cho, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2021
  • Naju Seokdanggan, Treasure No. 49, was dismantled and reconstructed due to poor performance. During construction, the crack area was reinforced and the inclination was improved. It is necessary to analyze the stiffness changes before and after the reconstruction of these cultural properties, and to establish a database of related information. In addition, there is a need for research on a scientific non-destructive testing method capable of predicting or evaluating the reinforcing effect. In this study, a simple equation for estimating the overall stiffness of the structural system was derived from information on the elasticity coefficient and the natural frequency measured by vibration tests before and after reconstruction work, and the applicability of the equation was examined. If the stiffness of important cultural properties is regularly investigated by the suggested method, it is judged that it can be used as data to estimate the time when structural safety diagnosis is necessary or when repair or reinforcement is necessary.

Development on Reconstruction Cost Model for Decision Making of Bridge Maintenance (교량 유지관리 의사결정 지원을 위한 개축비용 산정모델 개발)

  • Sun, Jong-Wan;Lee, Dong-Yeol;Lee, Min-Jae;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.533-542
    • /
    • 2016
  • The periodic maintenance of bridges is necessary once they have been constructed and its cost depends on various factors, such as their condition, environmental conditions and so on. To make a decision support system, it is essential to establish a basic reconstruction cost model. In this study, a regression model is suggested for calculating the reconstruction cost for typical cases and influential factors, depending on the type of bridge and its components, by analyzing the basic bridge specifications based on the data of the Bridge Management System (BMS). The details for each case were estimated in consideration of the cost calculation variables. The details for each case were estimated in consideration of the cost calculation variables. The cost model for the new construction of the superstructure, substructure and foundation and the temporary bridge construction and demolition costs were drawn from the regression analysis of the estimation results of typical cases according to the cost calculation variables. The reconstruction costs for different types of bridge were obtained using the cost model and compared with those in the literature. The cost model developed herein is expected to be utilized effectively in maintenance decision making.