The physical properties of rocks in reservoirs change after CO2 injection, we modeled a reservoir with a transition zone within which the physical properties change linearly. The function of the Wolf reflection coefficient consists of the velocity ratio of the upper and lower layers, the frequency, and the thickness of the transition zone. This function can be used to estimate the thickness of a reservoir or seafloor transition zone. In this study, we propose a method for predicting the thickness of the transition zone using deep learning. To apply deep learning, we modeled the thickness-dependent Wolf reflection coefficient on an artificial transition zone formation model consisting of sandstone reservoir and shale cap rock and generated time-frequency spectral images using the continuous wavelet transform. Although thickness estimation performed by comparing spectral images according to different thicknesses and a spectral image from a trace of the seismic stack did not always provide accurate thicknesses, it can be applied to field data by obtaining training data in various environments and thus improving its accuracy.
This study investigates the difference of sound velocity (compressional wave velocity) between gas hydrate-bearing sediments and nongas hydrate-bearing sediments in the Ulleung Basin, East Sea. We use a dataset measured from one site in the central part of the Ulleung Basin. Sound velocity for gas hydrate-bearing sediment shows the range from 1600 m/s to 2200 m/s. However, the value for nongas hydrate-bearing sediment is mostly around 1500 m/s, being less than 1400 m/s below 140 m subbottom depth. This trend is probably due to the presence of free gas below BSR (Bottom Simulating Reflector). Gas hydrate-bearing sediments show high value (maximum 150 Ohm-m) of resistivity. The physical properties between gas hydrate-bearing sediment and nongas hydrate-bearing sediment are characterized by the different patterns due to the presence of gas hydrate in comparison with those of marine unconsolidated sediments. Therefore, in order to investigate acoustic and physical properties for gas hydrate-bearing sediments, the study for the occurrence type and the amount of gas hydrates should be conducted simultaneously.
Geoacoustic model comprises physical and acoustic properties of submarine bottom layers influencing sound transmission through sea water and underwater. This study suggested for the first time that we made a geoacoustic model of long-coring bottom layers at the SSDP-105 drilling site of the Ulsan coastal area, which is located in the southwestern inner shelf of the East Sea. The geoacoustic model of 52 m depth below seafloor with three-layer geoacoustic units was reconstructed in the coastal sedimentary strata at 79 m in water depth. The geoacoustic model was based on the data of a deep-drilled sediment core of SSDP-105 and sparker seismic profiles in the study area. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the sea floor using the Hamilton modeling method. We suggest that the geoacoustic model be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the Ulsan coastal area of the East Sea.
A seismic reflection Survey was carried out in the offshere area between Geoje Island and Namhae Island, utilizing the echosounder with the frequency 28KHz and thd Uniboom with the filter band 800∼2000Hz. The results show the submarine topography, sedimentary layer structure and the depth distribution of the base rock. The water depth of the sea in the survey area is less than 80m; up to 40m contour line the sea bottom surface has a slight dip(about 1/1000), while in the zone deeper than 40m the bottom topography has a irregular relief. The thickness of the whole sedimentary deposit is about 20∼70m and divided into 3 layers: Upper layer(A layer) with horizontal laminae, intermediate layer(B layer) with cross-bedding and groove structure, and lower layer(C layer) not showing any sedimentary structure on the seismic reflection profile. The surface of the base rock is deeper gradually in the south-eastern part of the survey area and extends to 140m depth. The vertical sediments sequences, composed of B layer and A layer, show the type of transgressive sequences. It is interpreted that B layer was formed at one period when the sea level was lower 40∼60 than the present and ince then, following the rising of the sea level, A layer was deposited.
In this paper, we propose an threshold-based Schur algorithm for estimating the media characteristics of sub-bottom multi-layers by using the signal generated by a parametric array transducer. We use the KZK model to generate a parametric array signal, and use the proposed threshold-based Schur algorithm for estimating the reflection coefficients of multiple sea bottom layers. Using computer simulation, we verify that the difference frequency component generated by the KZK model prevails over the signals of primary frequencies at long range. For the simulation, we use the transmit signal generated by the KZK and the reflected signal obtained from a lattice filter model for the seawater and sub-bottom of multi-level non-homogeneous layers. Through the simulation, we verify that the proposed threshold-based Schur algorithm can give much more accurate and efficient estimates of the reflection coefficients than methods using received signal, matched filter output signal, and normal Schur algorithm output.
For surveying shallow gas reservoirs in the Pohang basin, we proposed a seismic exploration method applicable to the transition zone in which land and marine areas are connected. We designed the seismic acquisition geometry considering both environments. We installed land nodal receivers on the ground and employed vibroseis and airgun sources in both land and marine areas. For seismic exploration in the transition zone, specific acquisition and processing techniques are required to ensure precise matching of reflectors at the boundary between the onshore and offshore regions. To enhance the continuity of reflection events on the seismic section, we performed amplitude and phase corrections with respect to the source types and applied a static correction. Following these processing steps, we obtained a seismic section showing connected reflectors around the boundary in the transition zone. We anticipate that our proposed seismic exploration method can also be used for fault detection in the transition zone.
The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.
The electromagnetic (light) waves have a limitation to penetrate media, ie, water and sea-bottom layers, due to high energy attenuation, but acoustic (sound) waves play as the good messenger to gather the underwater target information. Therefore, the acoustic methods are applied to almost all of ocean equipments and technology in terms of in-water and sub-bottom surveys. Generally the sound character is controlled by its frequency. In case that the sound source is low frequency, the penetration is high and the resolution is low. On the other hand, its character is reversed at the high frequency. The common character at the both of light and sound is the energy damping according to the travel distance increase.
As a study of Arctic marine survey project, Side-scan sonar survey was carried out in the Pechora Sea belonging to the southeaster part of Barents Sea. The study area is a shallow sea 11 m-16 m deep with recent sediments of rich organic carbon. Side-scan sonar profiles show large-scale marine plant communities 2-3 m wide covering the southeastern area. A lot of lineaments are traced on the seafloor in the central and northern area. The major trends of the lineaments are 220°and 290°(WSW-ENE and WNW-ESE). This trends is thought to be a main path of icebergs. Pockmarks on the seafloor are locally distributed in the area, which are formed by fluid and/or gas discharge. These would be related with petroleum/gas system well developed around the study area. Dut to weak appearances and limited distribution of the pockmarks, more detailed studies are necessary to examine their nature and structure.
High-resolution shallow marine seismic surveys have been carried out for the resources exploration, engineering applications and Quaternary mapping. To improve the resolution of subsurface structure image, multichannel digital technique has been applied. The quality of the image depends on the vertical and horizontal resolution and signal to noise (S/N) ratio which are associated with the data acquisition parameters such as sample interval, common midpoint (CMP) interval and CMP fold. To understand the effect of the acquisition parameters, a test survey was carried out off Yeosu and the acquired data were analyzed. A 30 $in^3$ small air gun was used as a seismic source and 8 channel streamer cable with a 5 m group interval was used as a receiver. The data were digitally recorded with a shot interval of 2 s and sample interval of 0.1 ms. The acquired data were resampled with various sample intervals, CMP intervals and CMP folds. The resampled data were processed, plotted as seismic sections and compared each other. The analysis results show that thin bed structure with ${\~}1m$ thickness and ${\~}6^{\circ}$ slope can be imaged with good resolution and continuity and low noise using the acquisition parameters with a sample interval shorter than 0.2 ms, CMP interval shorter than 2.5 m and CMP fold more than 4. Because seismic resolution is associated with the acquisition parameters, the quality of the subsurface structure can be imaged successfully using suitable and optimum acquisition parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.