• Title/Summary/Keyword: 해저면 위치 선정

Search Result 8, Processing Time 0.028 seconds

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal (해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Son, Woohyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.181-196
    • /
    • 2015
  • A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

Topographic Analysis Using Wavelet-Based Digital Filters in the KR5 area, NE Equatorial Pacific (웨이브렛 디지털 필터를 이용한 북동태평양 KR5 지역의 지형 분석방법)

  • Jung, Mee-Sook;Lee, Tae-Gook;Kim, Hyun-Sub;Ko, Young-Tak;Park, Cheong-Kee;Kim, Ki-Hyune
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.311-320
    • /
    • 2006
  • Digital filters designed using wavelet theory are applied to bathymetry data acquired from KR5 area of Korea Deepsea Mining Area. The filters used in this study are the linear B-spline wavelet filter and derivative of a Cubic B-spline filter. With proper tuning of the digital filters, we can identify the location and orientation of the abyssal hill and abyssal trough in bathymetry. These features obtained from the digital filters are well correlated with bathymetric image. This quantitative information, which can be used to understand the underlying geophysical processes, can be further processed to obtain the spacing, orientation and distribution of the abyssal hill. This wavelet analysis of bathymetry provides good data to select the mining site.

  • PDF

Analytical Performance Comparison of Scour Protection of Rubble Mound Structure Shape using Simulation (해석적 모의조파실험을 이용한 해안사석구조물 형상에 따른 해저면 세굴 방지 성능 비교)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.117-122
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Design and Implementation of Monitoring System for Submarine Optical fiber Cable Work (해저 광케이블 작업을 위한 모니터링 시스템의 설계 및 구현)

  • 이태오;정성훈;임재홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.205-208
    • /
    • 2002
  • When establishing the submarine optical fiber table between international and domestic, marine survey in advance it grasps the submarine geological features which is accurate and a depth of water condition. And the route which is safe for selecting and submarine optical fiber cable laying it is a work which secures an ease one location. If also, the PLGR the submarine of optical fiber table root the sea contamination material (rope, wire and net) it removes in advance and if the submarine of the optical fiber cable ease it does to arrive safely. And it is a work the Plough and ROV laying work hour laying work efficiency improvement and laying equipment it will be able to protect. So, This paper presents the monitoring system of ship information management and operation for marine survey and PLGR work in submarine optical fiber table construction enterprise. In order to achieve these purpose, overall serial multi-port communication modulo of configuration, realtime processing for management and operation of receiving data, realtime graph and a printout are described.

  • PDF

Study on Modeling Procedure of Hydraulic Experiment of Coastal Structure Scour at Sea-Bed Using Fluid-structure Interaction (유체-구조 상호작용을 고려한 해안구조물의 해저면 세굴에 대한 조파실험 해석 기법 연구)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.49-53
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Analysis of Seabottom and Habitat Environment Characteristics based on Detailed Bathymetry in the Northern Shore of the East Sea(Gyeongpo Beach, Gangneung) (정밀 해저지형 자료 기반 동해 북부 연안(강릉 경포) 서식지 해저면 환경 특성 연구)

  • Lee, Myoung Hoon;Rho, Hyun Soo;Lee, Hee Gab;Park, Chan Hong;Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.729-742
    • /
    • 2020
  • In this study, we analyze seabottom conditions and characteristics integrated with topographic data, seafloor mosaic, underwater images and orthophoto(drone) of soft-hard bottom area around the Sib-Ri rock in the northern shore of the East Sea(Gyeongpo Beach, Gangneung). We obtained field survey data around the Sib-Ri rock(about 600 m × 600 m). The Sib-Ri rock is formed by two exposed rocks and surrounding reef. The artificial reef zone made by about 200 ~ 300 structures is shown the western area of the Sib-Ri rock. The underwater rock region is extended from the southwestern area of the exposed the Sib-Ri rock with 9 ~ 11 m depth range. The most broad rocky seabottom area is located in the southwestren area of the Sib-Ri rock with 10 ~ 13 m depth range. The study area were classified into 4 types of seabottom environment based on the analysis of bathymetric data, seafloor mosaics, composition of sediments and images(underwater and drone). The underwater rock zones(Type I) are the most distributed area around the Sib-Ri Rock(about 600 m × 600 m). The soft seabottom area made by sediments layer showed 2 types(Type II: gS(gravelly Sand), Type III: S(Sand)) in the areas between underwater rock zones and western part of the Sib-Ri rock(toward Gyeongpo Beach). The artificial reef zone with a lot of structures is located in the western part of the Sib-Ri rock. Marine algae(about 6 species), Phylum porifera(about 2 species), Phylum echinodermata(about 3 species), Phylum mollusca(about 3 species) and Phylum chordata(about 2 species) are dominant faunal group of underwater image analysis area(about 10 m × 10 m) in the northwestern part of the Sib-Ri rock. The habitat of Phylym mollusca(Lottia dorsuosa, Septifer virgatus) and Phylum arthropoda(Pollicipes mitella, Chthamalus challengeri hoek) appears in the intertidal zone of the Sib-Ri rock. And it is possible to estimate the range and distribution of the habitat based on the integrated study of orthphoto(drone) and bathymetry data. The integrated visualization and mapping techniques using seafloor mosaic images, sediments analysis, underwater images, orthophoto(drone) and topographic data can provide and contribute to figure out the seabottom conditions and characteristics in the shore of the East Sea.

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.