• Title/Summary/Keyword: 해일특성

Search Result 132, Processing Time 0.024 seconds

Frequency Analysis on Surge Height by Numerical Simulation of a Standard Typhoon (표준태풍 모의를 통한 해일고 빈도해석)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.284-291
    • /
    • 2016
  • A standard typhoon, which results in extreme wind speeds having various return period, can be reconstructed by combination of typhoon parameter informations(Kang et al., 2016). The aim of this study is to present a kind of surge-frequency analysis method by numerical simulation of a standard typhoon at Yeonggwang. MIKE21 was adopted as a numerical model and was proved to simulate the surge phenomena of the typhoon BOLAVEN(1215) well at several sites of the Western Coast. The simulation results with change of typhoon track which reflects typhoon-surge characteristics of the Western Coast show to have something in common with the observational results. This method is considered to be very efficient method on the point of simulating only one typhoon, while existing methods need to simulate a lot of typhoons.

Characteristics of Tsunamis and Mitigation Planning (지진해일의 특성 및 방재대책)

  • Cho, Yong-Sik;Ha, Tae-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.295-300
    • /
    • 2010
  • Recently, many tsunamis triggered by impulsive undersea ground motions occurred in subduction zones around the Pacific Ocean area including the East Sea surrounded by Korea, Japan and Russia. The wave height of a tsunami may be in the order of several meters, while the wavelength can be up to 1,000 km in the ocean, where the average water depth is about 4 km. A tsunami could cause a severe coastal flooding and property damage not only at neighboring countries but also at distant countries. A fundamental and economic way to mitigate unusual tsunami attacks is to construct tsunami hazard maps along coastal areas vulnerable to tsunami flooding. These maps should be developed based on the historical tsunami events and projected scenarios. The map could be used to make evacuation plans in the event of a real tsunami assault.

Effects of tsunami waveform on overtopping and inundation on a vertical seawall (직립호안에서 지진해일 파형이 월파와 침수에 미치는 영향)

  • Lee, Woodong;Kim, Jungouk;Park, Jongryul;Hur, Dongsoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.643-654
    • /
    • 2018
  • In order to generate the stable tsunami in a numerical wave tank, a two-dimensional numerical model, LES-WASS-2D has been introduced the non-reflected wave generation system for various tsunami waveforms. And then, comparing to existing experimental results it is revealed that computed results of the LES-WASS-2D are in good agreement with the experimental results on spatial and temporal tsunami waveforms in the vicinity of a seawall. It is shown that the applied model in this study is applicable to the numerical simulations on tsunami overtopping and inundation. Using the numerical results, the characteristics of overtopping and inundation on a seawall are also discussed with volume ratio of tsunami and relative tsunami height. The wider the tsunami waveform, tsunami overtopping quantity and inundation distances are linearly increased. Therefore, the hydraulic characteristics is highly likely to be underestimated against the real tsunami if the solitary wave of approximation theory is applied for the overtopping/inundation simulations due to a tsunami.

A Study on the Long-Term Variations of Annual Maximum Surge Heights at Sokcho and Mukho Harbors (속초와 묵호항의 연간 최대해일고의 장기간 변동성에 대한 고찰)

  • Kwon, Seok-Jae;Moon, Il-Ju;Lee, Eun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.564-574
    • /
    • 2008
  • This study investigates a long-term variation of annual maximum surge heights(AMSH) and main characteristics of high surge events, which is influenced by the global warming and intensifying typhoons, using sea level data at Sokcho and Mukho tidal stations over 34 years ($1974{\sim}2007$). It is found that the there is a longterm uptrend of the AMSH at Sokcho (8.3 cm/34yrs) and at Mukho (8.7 cm/34yrs), which is significant within 95% confidence level based on the linear regression. The statistical analysis reveals that 53% of the AMSH occurs during typhoon's event in both tidal stations and the highest surge records are mostly produced by the typhoon. It is concluded that the uptrend in the AMSH is attributed by the increasing typhoon activities globally as well as locally in Korea due to the increased sea surface temperature in tropical oceans. The continuous efforts monitering and predicting the extreme surge events in the future warm environments are required to prevent the growing storm surge damage by the intensified typhoon.

Tsunami Force Acting on Coastal Structures (지진해일에 의해 해안구조물에 작용하는 힘)

  • Hong, Seong-Soo;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • Tsunami forces acting on coastal structures have not been relatively much paid attention by researchers. However, they should be appropriately reflected in design of coastal and harbor facilities. The temporary and permanent tsunami shelters have to be chosen to resist stably against unexpected tsunami forces. There have been only few numerical studies on the tsunami forces acting on coastal and harbor structures. In this study, a practical prediction of tsunami forces is carried out by using a two-dimensional numerical model.

Estimation of Extreme Sea Levels Reflecting Tide-Surge Characteristics (조석-해일 특성을 반영한 극치해면고 산정)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.103-113
    • /
    • 2018
  • Tide-surge characteristics of the West/South domestic coasts were analyzed with a tool of EST (empirical simulation technique). As a result, stations of Incheon, Gunsan, Mokpo and Busan are categorized as tide-dominant coasts, while Yeosu, Tongyoung and Busan are as surge-dominant coasts. In the tide-dominant coasts, extreme sea level of less than 50-yr frequency is formed without typhoon-surge, while only 10-yr extreme sea level is formed in the surge-dominant coasts. As the results of casual condition of extreme sea level formation considering the relative degree of surge on tide, the regional characteristics were detected also. Three methods for estimating the design tide level were compared. The AHHW method shows an unrealistic outcomes of the concern of over estimate design. Furthermore, the probability distribution function method has been concerned as causing missing data if a huge typhoon occurs in a neap tide or a low tide. To cope with these drawbacks, the applicability of the EST method is proved to be suitable especially in tide-dominant coasts.

Characteristics of Storm Surge by Forward Speed of Typhoon in the South Coast of Korea (태풍의 이동속도에 따른 한국 남해안 폭풍해일고의 특성)

  • Park, Young Hyun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • The damage caused by typhoons is gradually increasing due to the climate change recently. Hence, many studies have been conducted over a long period of time on various factors that determine the characteristics of storm surge, and most of relationships have been discovered. Because storm surge is complexly determined by various factors, it often show different results and draw different conclusions. For this reason, this study was conducted to understand the various characteristics of storm surge caused by changes in the forward speed of typhoons. This study was carried out with a numerical model, and the effect of forward speed could be analyzed by simplifying other factors as much as possible. When forward speed is increased, storm surges caused by typhoons tended to increase gradually. The storm surge showed a wide and gentle increase at a slow speed, but a narrow and steep one at a fast speed. In the case of the same forward speed, it was found that the storm surge was significantly influenced by the water depth of actual sea area. It was confirmed that the change in forward speed after passing Jeju Island did not significant affect on the storm surge in the south coast of Korea.

Sensitivity Analysis for Active Control over Input Parameters in Tsunami Models (지진해일 모형 입력인자의 능동적 제어를 위한 민감도 분석)

  • Son, Sangyoung;Jung, Tae-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.469-469
    • /
    • 2016
  • 본 연구에서는 지진해일 모의결과를 바탕으로 하여 지진해일모형 결과에 민감하게 작용할 수 있는 다양한 입력조건을 분석하였다. 우선 2004년 인도양 지진해일 모의를 위하여 다중격자체계를 갖추고 있는 COMCOT모형과 수심적분된 Boussinesq모형의 결합모형을 사용하였으며, 근해역에 지진해일 충격 및 피해산정 결과에 유효한 영향을 주는 입력인자를 파악하기 위하여 4가지의 시나리오를 설정하였다. 각 시나리오에서는 3개의 서로 다른 독립인자가 포함되었으며 이들은 배타적으로 결정되어 최소한의 시나리오로 다양한 분석이 가능하도록 하였다. 즉, 시나리오 1에서는 지진해일의 초기수면상태를 산정하기 위한 간략화된 단층모형을 적용하였고, 이 때 바닥마찰에 대한 고려는 배제되었다. 시나리오 2에서는 시나리오 1과 모든 조건은 동일하게 하였으나 유한단층 모형을 통해 초기수면상태를 산정하도록 하였다. 이처럼 유사하게 시나리오 3에서는 복잡한 지형 특성을 나타내는 몰디브 지역의 보다 정확한 해석을 위하여 몰디브 지역의 상세격자망을 추가적으로 다중격자체계에 포함시켰다. 마지막으로 바닥마찰항에 대한 민감도를 분석하기 위하여 시나리오 4에서는 바닥마찰항에 대한 고려를 포함시켰다. 또한, 4가지 시나리오 외에 결합모형의 성능을 평가하기 위하여, COMCOT모형만을 사용하는 시나리오를 추가적으로 설정하였다. 즉, 시나리오 1과 모든 조건은 동일하되 COMCOT모형만을 사용하도록 하였다. 설정된 조건에 따른 수치모의 결과, 지진해일 내습에 따른 해수위 변화는 각 시나리오별로 큰 차이를 보이지 않았으나, Boussinesq모형에 의한 지진해일의 동수역학적 거동은 COMCOT모형을 사용한 결과와 유의한 차이를 보였으며, 특히 파랑에 기인한 난류적 거동은 극명한 대조를 이루었다. 따라서, 본 연구결과를 통해 향후 파랑에 기인한 난류적 거동의 정확모의를 위해 수치해석에 따른 확산오차 및 바닥마찰항에 대한 면밀한 연구가 필요함을 시사하였다.

  • PDF

Numerical Simulation of Wave Transformation considering the Storm Surge Height at the Nakdong Estuary (해일고를 고려한 낙동강 하구역의 파랑변형 수치모의)

  • YOO CHANG-ILL;YOON HAN-SAM;RYU CHEONG-ROO;KIM DO-SAM
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.298-302
    • /
    • 2004
  • 본 연구에서는 낙동강 하구역 해역에서의 폭풍 해일의 특성 및 이를 고려한 외해 압사파랑특성을 고찰하고 연안사주 전면의 입사파랑과 퇴적 특성과의 상호 관계를 고찰하였으며 천해역의 파랑변형을 예측할 수 있는 다방향 불규칙파 묘형을 구성하고 폭풍 해일고를 수심조건에 고려함으로써 하구역 해역에서의 파랑 변형계산을 2차원 평면수치모의실험을 수행하였다. 낙동강 하구역에서 서측에 위치하는 진우도 전면해역이 무명도 전면해역보다 약 1.0배에서 2.0배 크게 파고분포를 나타내었다. 이는 입사하는 파랑의 공간 분포가 사주전면에서 공간적으로 차이가 남을 나타내는 것으로 사주의 퇴적작용에 영향을 줄 것이라고 판단된다.

  • PDF

Storm Surge Analysis using Archimedean Copulas (Copulas에 기반한 우리나라 동해안 폭풍해일 분석)

  • Hwang, Jeongwoo;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.421-421
    • /
    • 2017
  • In order to secure the safety of coastal areas from the continuous storm surge in Korea, it is important to predict the wave movement and properties accurately during the storm event. To improve the accuracy of the storm simulation, and to quantify coastal risks from the storm event, the dependencies between wave height, wave period, and storm duration should be analyzed. In this study, therefore, copulas were used to develop multivariate statistical models of sea storms. A case study of the east coast of Korea was conducted, and the dependencies between wave height, wave period, water level, storm duration and storm interarrival time were investigated using Kendall's tau correlation coefficient. As a result of the study, only wave height, wave period, and storm duration appeared to be correlated.

  • PDF