• Title/Summary/Keyword: 해역

Search Result 4,710, Processing Time 0.039 seconds

Application of the Artificial Mussel for Monitoring Heavy Metal Levels in Seawater of the Coastal Environments, Korea (Artificial mussel을 이용한 우리나라 연안환경의 중금속 오염도 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Seung-Yong;Kim, Eun-Soo;Lee, Jung-Moo;Wu, Rudolf S.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.131-145
    • /
    • 2014
  • The new passive sampler called "artificial mussel (AM)" offers a potential device to study the spatiotemporal changes of metal concentrations in different marine environment worldwide. The purpose of this study is to characterize metal (Cd, Cr, Cu, Zn, Pb) accumulation on the AM and transplanted mussel (Mytilus edulis) at 5 sites of Lake Shihwa. Both the AMs and mussels showed increasing concentrations of all five metals during the 12 weeks exposure period. Higher concentrations of Zn were showed in both the AMs and Mytilus edulis relative to other metals. The AMs accumulated higher concentrations of Cd, Cr and Zn, but they presented lower levels of Cu and Pb than Mytilus edulis. The correlations for Cd, Cu and Pb were statistically significant between the AMs and Mytilus edulis, indicating that the accumulation patterns for those metals were similar. However, no similarities for Cr and Zn were observed between two monitoring devices across all of the sites in Shihwa Lake. According to relationship for metal concentrations between dissolve phase in seawater and both the AMs and Mytilus edulis, the AMs for Cd, Cu and Zn represent more metal contamination than Mytilus edulis. Our results indicated that the AMs give a better resolution to reveal the spatial differences in dissolved metal concentration. This study suggests that the AMs can provide a time-integrated estimate of metal pollution in marine environments as well as freshwater environments of Korea.

A Study of Long-term Trends of SST in the Korean Seas by Reconstructing Historical Oceanic Data (과거 해양자료 복원을 통한 한반도 주변해역 표층수온의 장기변동 연구)

  • Park, Myung-Hee;Song, Ji-Young;Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.881-897
    • /
    • 2019
  • We reconstructed and digitized the National Institute of Fisheries Science (NIFS) Serial Oceanographic observations (NSO) and Coastal Oceanographic observations (NCO) data attained prior to 1961 through historical oceanographic observation data rescue projects. Increasing trends of long-term sea surface temperature (SST) were shown from the NSO data of 21 available stations for the past 80 to 92 years. In general agreement with previous research results used in the data of the past 50 years, we calculated the rate of temperature rise. As a result of analyzing the spatial distribution of SST change rate in the Korean of shore region using selected oceanographic data, the West Sea and South Sea showed a higher tendency of temperature rise in the offshore area than in the coastal area. However, unlike the results of previous studies, the East Sea (Gangwon Line and Ulsan Line) showed a lower water temperature rise than the coastal stations. Annual fluctuations of NCO's SST data from 1989 to 1998 for three stations representing the East Sea, South Sea, and West Sea, (Jumunjin, Geomundo and Budo, respectively) revealed that the East Sea showed the highest SST increase for the 10 years. The increases were 1.63 ℃ at Jumunjin, 1.16 ℃ at Geomundo, and 0.79 ℃ at Budo. As a result of the investigation, it can be concluded that SST is repeatedly rising and falling with a period of 3 ~ 6 years. Especially, since the 1980s, most of the stations show positive anomalies of SST. Lastly, to understand ocean_atmosphere interactions, we analyzed the correlations between SST of the NCO stations and air temperature around them and the results were 0.76 for the South Sea (Geomundo), 0.34 for the West Sea (Budo), and 0.32 for the East Sea (Jumunjin) with the highest correlation in the South Sea.

The Community Structures of Macrozoobenthos during Summer in the Incheon and Busan Harbors, Korea (인천항 및 부산항의 여름철 대형저서동물군집의 구조)

  • Seo, Jin-Young;Park, So-Hyun;Lim, Hyun-Sig;Chang, Man;Choi, Jin-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.6-19
    • /
    • 2009
  • We investigated the macrozoobenthos at major two harbors of Korea in July and August 2007 in order to check the changes in the species composition due to the invasive species and to make a species inventory at each harbor system. At the Incheon Harbor, a total of 88 species was sampled with abundance of 3,212 ind. m$^{-2}$ and biomass of 239 g m$^{-2}$. The most dominant species was Tharyx sp. belong to polychaete taxa, followed by Chaetozone setosa in the harbor area. The dominant species of outer area were Musculus senhousia and Sternaspis scutata. The diversity index ranged between 0.9$\sim$2.4, and evenness index between 0.3$\sim$0.9, and richness index between 1.8$\sim$3.9. Benthic pollution index ranged between 16$\sim$74. The highest benthic pollution index was at station 4. On the other hand the lowest value was at station 6, where a large amount of M. senhousia belong to mollusca occurred. At the Busan Harbor, a total of 89 species was sampled with density of 1,845 ind. m$^{-2}$ and biomass of 133.6 g m$^{-2}$ in August 2007. The most dominant species was Tharyx sp., followed by M. japonica and Cirratulus cirrata within harbor area. M. japonica was dominant species in the outer area. The diversity index ranged between 0.7$\sim$2.2, evenness index between 0.3$\sim$1.0, and richness index between 1.1$\sim$4.1. Benthic pollution index ranged between 31$\sim$90. The lowest benthic pollution index was found at site 2 within harbor area.

Isotopic Evidence of Marine Yeast to Artificial Culture of Moina macrocopa (물벼룩(Moina macrocopa)배양을 위한 해양효모의 유효성에 대한 안전 동위원소의 증거)

  • Kim Mu-Chan;Kang Chang-Keun;Park Hye-Young;Lee Dae-Seong;Kim Yun-Sook;Lee Won-Jae
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • A feeding trial was conducted to test the use of marine yeasts isolated from seawaters and sediments as a dietary source in cultivating a Cladocera, Moina macrocopa which is available as an alternative live food for fish larvae. The marine yeast-fed M. macrocopa had similar essential amino acid profiles to the documented values for Rotifers and Artemia enriched in microalgae and commercial diets. Erythrobacter sp. $S{\pi}-1$ lacked ${\omega}-3$ high unsaturated fatty acids (HUFAs), $20:5{\omega}-3$ (EPA) and $22:6{\omega}-3$ (DHA), which were also poor but detected in both the marine yeasts. An increase in the $20:5{\omega}-3$ and $22:6{\omega}-3$ levels, compared with the levels in marine yeast strains themselves, was more pronounced in the $22:6{\omega}-3$ level of Moina fed the Candida sp. Y-16, resulting in a high DHA:EPA ratio. When the Moina diets were switched, their ${\delta}^{13}C$ values shifted gradually toward the values of the switched diets. Diet switch from Erythrobacter sp. $S{\pi}-1$to Candide sp. Y.16 resulted in a more rapid turnover of Moina tissue carbon than that in the inverse case. When fed a mixed diet, the ${\delta}^{13}C$ values of Moina tissue approached the value of marine yeasts immediately. These temporal changes in the ${\delta}^{13}C$ values of Moina tissue indicate the preferential ingestion of marine yeasts and a selective assimilation of the carbon originated from marine yeasts. These findings suggest that marine yeasts, particularly Candida sp. Y-16, are highly available to mass cultures of M. macrocopa, providing better nutritional and dietaty values than the commercial diet (Erythrobacter sp. $S{\pi}-1$).

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

Primary Productivity and Assimilation Number in the Kyonggi Bay and the mid0eastern coast of Yellow Sea (서해 중동부 연안수역과 경기만에서 일차 생사력과 동화계수에 관한 연구)

  • 강연식;최중기
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 1992
  • In order to examine controlling factors on primary productivity and assimilation Number of phytoplankton, chlorophyll-a concentrations, light intensity, temperature, salinity and transparency were measured in the Kyonggi Bay and in the mid0eastern coast of Yellow Sea from March 1989 to October 1990. Chlorophyll-a concentration of phytoplankton ranged from 0.91 to 4.30 ug/; in the Kyonggi Bay, and from 0.78 to 4.97 ug/l in the mideastern coast of Yellow Sea. Daily averaged primary productivities and annual primary productivities of phytoplankton ranged from 37.23 to 1104.44 (averaged 361.54) mgC/m$^2$/day, 131.96hC/m$^2$/yr in the mid0eastern coast of Yellow Sea, respectively. Assimilation Number of phytoplankton ranged from 1.47 to 28.28 mgC/mg chl-a/hr in the Kyonggi Bay, and of phytoplankton in the Kyonggi Bay was higher than that of the mid0eastern coast of Yellow Sea. Light utilization efficiencies (a) in the P-I curve ranged from 0.03 to 0.93 [mgC/mg chl-a/hr]/[ue/m$^2$/sec]in the Kyonggi Bay, and from 0.01 to 0.62 [mgC/mg chl-a/hr]/[ue/m$^2$/sec] in the mid-eastern coast of Yellow Sea. Their results indicated that phytoplankton in the Kyonggi Bay utilized light more efficiently than those of the mid0eastern coast of Yellow Sea. The average values of I/SUB k/ were 48.15 ue/m$^2$/sec in the Kyonggi Bay, and 120.37 uE/m$^2$/sec in the mid-eastern coast of yellow Sea. It means the phytoplankton populations in the Kyonggi Bay seem to be adapted to lower light intensity than those of the mid-eastern coast of Yellow sea.

  • PDF

Geophysical characteristics of seamounts around Dok Island (동해 독도주변 해산의 지구물리학적 특성)

  • 강무희;한현철;윤혜수;이치원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.267-285
    • /
    • 2002
  • Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

Effect of an Offshore Fish Culture System on the Benthic Polychaete Community (외해가두리 양식이 저서다모류군집에 미치는 영향)

  • Jung, Rae-Hong;Yoon, Sang-Pil;Kim, Youn-Jung;Lee, Won-Chan;Hong, Sok Jin;Park, Sung-Eun;Oh, Hyung Taik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.195-205
    • /
    • 2013
  • Excessive input of organic matters from fish cage farming has been considered as one of the major factors disturbing benthic ecosystem, especially in semi-enclosed coastal waters. Recently offshore aquaculture in the vicinity of Jeju-do has been introduced to minimize that kind of negative impact. This study was conducted to investigate the ecological impacts of offshore aquaculture on the macrobenthic polychaete communities. A total of ten sampling works were carried out for 28 months, spanning from 10 days after starting giving feed to 3 months after stopping giving feed. During the study period, mean current velocity was quite strong with the range of 50 cm/s to 70 cm/s. TOC of surface sediment was constantly low. Significant changes in polychaete community were detected just three months after starting giving feed, which were the increase of the number of species and density at all stations. Up to 18 months after the start of farming, the amount of feed provided played an important role in the fluctuation of the number of species and density, especially at 0 m and 10 m stations. After reducing the amount of feed provided, dominance of some opportunistic species within 10 m distance from fish cages still lasted to the end of aquaculture. However, opportunistic species disappeared 3 months after the end of farming, which indicated the sign of recovery from the disturbance. From these results, the amount of food input and the period of cultivation were critical factors disturbing polychaete community and ensuing changes in this offshore and oligotrophic waters as well. In addition, study on the changes of polychaete community structure before and after fish farming showed more detailed changes in benthic ecological state than geochemical approach did.

Long-term Changes of Bathymetry and Surface Sediments in the dammed Yeongsan River Estuary, Korea, and Their Depositional Implication (영산강 하구의 수심 및 표층 퇴적물 특성의 변화와 퇴적환경)

  • KIM, YOUNG-GIL;CHANG, JIN HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.88-102
    • /
    • 2017
  • Long-term changes in bathymetry and grain size of surface sediments were investigated for understanding depositional sedimentary environments in the channelized Yeongsan River Estuary, Korea. The results revealed that an average depth of the estuary had decreased up to 2.1 m from 1982 to 2006, while it had increased to 0.3 m from 2006 to 2012. The rapid decrease of the water depth from 1982 to 2006 was due to the vast deposition of mud caused by the change of water course and flow velocity after the estuary was dammed. Meanwhile the increase of the water depth from 2006 to 2012 may be associated with multiple erosional processes, including a dredging at the southern part of the estuary and other erosions from the dike sluice expansion work. Considering the water-depth change and tidal-level variation in the study area, an depositional rate in the estuary is estimated to be 8~9 cm/yr for the last 2 decades (1982~2006). The sediments of Yeongsan River Estuary are largely composed of silt-clay mixtures: overall, silt is distributed mainly in the shallow area of the estuary edge, while clay is confined to the deep area of the estuary center. Mean grain size of the sediments is 6.0 Ø on average in 1997, 7.8 Ø on average in 2005 and 7.7 Ø on average in 2012, respectively, suggesting that the sediments became finer due to the increase of silt and clay contents in 1997~2005. Furthermore, several lines of evidences, including the comparison between the amounts of the sediment influx discharged from the Yeongsan River and the sediments in the estuary, and the changes in distribution pattern of silt and clay contents implying that they moved from offshore to estuary dike, indicate that the mud sediments are originated mainly from the offshore, not from the river.

Distribution of Total Mercury in Korean Coastal Sediments (한반도 연안역 표층퇴적물 내 총 수은 분포 특성)

  • JOE, DONGJIN;CHOI, MANSIK;KIM, CHANKOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.76-90
    • /
    • 2018
  • To determine the distribution of mercury (Hg) in the coastal surface sediments around the Korean peninsula, the baseline concentration of Hg was estimated, the extent of contamination was assessed, and the factors controlling the distribution were discussed. The concentrations of Hg in surface sediments were significantly high in Jinhae-Masan Bay in the South Sea, Ulsan-Onsan Bay and Yeongil Bay in the East Sea, but Hg in other sediments showed a similar distribution to Cs and relatively very low concentration between 0.21 and $39.5{\mu}g/kg$ ($13.6{\pm}7.80{\mu}g/kg$). Compared to the sediment quality guidelines in Korea, 8 % of the surface sediments (n=282) analyzed in this study exceeded the values of the threshold effects level (TEL), and six sediments collected around Onsan Port were higher than the value of the probable effects level (PEL). The contamination levels of Hg were assessed by the enrichment factors using the baseline concentration (2.06Cs+1.75) based on the residual analysis from the linear regression line for Cs, and further, factors controlling the distribution of Hg were discussed by the comparison with geochemical substances depending upon the Hg enrichment level. Hg concentrations were correlated well with Cs concentration in the range of less than 1.69 of EF implying grain size control, while in the range of 1.69 and 4.03 Hg concentrations were correlated well with Fe oxyhyroxide and organic carbon contents, which indicates Hg was enriched by superior sorption capability. On the meanwhile, samples with higher EFs (4.03 to 74.9) showed fairly positive correlations with other metals (Cu, Zn, Pb) rather than geochemical substances. For samples in Youngil Bay and Ulsan-Onsan Bay (n=30), Hg concentrations were correlated only with other metals rather than geochemical substances implying simultaneous supply of metal particles from metal refineries. But samples at Gosung, Sokcho and Uljin coast were correlated well with organic carbon even though they had high EFs. In addition, samples in Jinhae-Masan Bay with high contents of S were enriched by relatively high sulfide formation.