• Title/Summary/Keyword: 해양 프로세스 기본설계

Search Result 4, Processing Time 0.02 seconds

Offshore Process FEED(Front End Engineering Design) Method for Integrated Process Engineering (통합 프로세스 엔지니어링을 위한 해양 프로세스 기본 설계 방법론)

  • Hwang, Ji-Hyun;Roh, Myung-Il;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.265-277
    • /
    • 2010
  • In this study, an offshore process FEED(Front End Engineering Design) method is systematically established to perform integrated process engineering for topsides systems of LNG FPSO(Floating, Production, Storage, and Off-loading unit) based on the concepts and procedures for the process FEED of general offshore production plants. First, various activities of the general process FEED engineering are summarized, and then the offshore process FEED method, which is suitable for application to all types of offshore oil and gas production plants, is proposed. Second, an integrated process engineering environment is built based on the proposed FEED method. Finally, the integrated process engineering environment is applied to topsides systems of an LNG FPSO in order to verify the validity and applicability of the proposed FEED method. As a result, it is shown that the proposed FEED method can be applied to the process FEED engineering of FPSOs and moreover will be able to contribute to perform successful offshore projects in the future.

Design Verification Method of Offshore Separation Systems Based on System Dynamics (시스템 다이내믹스 기반 해양구조물 분리시스템의 설계검증 방법에 관한 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong;Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2020
  • This paper proposes a design verification method based on system dynamics for offshore separation systems. Oil and gas separation systems are key components of offshore oil platforms; these systems determine the competitiveness of engineering, procurement, and construction (EPC) projects, especially in terms of added value. However, previous research on design verification has been limited to the process and deliverables of design. To address this, the study aims to develop a comprehensive design verification method and the associated functions from the perspective of project management, for the entire project life-cycle of offshore structures. The proposed methodology for design verification is expected to contribute toward effective and detailed designs as well as improve the competitiveness of EPC companies in constructing of shore structures during the early design stages. We first analyzed the separation system of the FPSO using the design verification method adopted by advanced countries and compared it with the system dynamics process formalized as ISO 15288. Subsequently, a tailored process for the design verification of the offshore structure was derived. It is shown that the proposed design verification method can be applied to the front-end engineering design process of of shore structures. Moreover, it can contribute toward the successful performance of offshore projects in the future and also minimize design changes and critical risks during the construction of these offshore structures.

Improving the Design-phased VE Process of Public Clients in Relation to Using Critical Success Factors (핵심성공요인과 연계한 공공발주기관의 설계VE 프로세스 개선에 관한 연구)

  • Park, Heedae;Han, Seung Heon;Kim, Sung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.399-408
    • /
    • 2009
  • The major changes in construction environment are that construction project is bigger and more complicated and the power of construction market changes from the supplier to the client or the user. Especially public construction enterprises have advanced to introduce the value engineering (VE) which is one of the cost management based on the owner's leading at the design phase for economical efficiency and quality improvement. According to the these efforts, the implementation of VE was legislated in the revised Construction Technology Management Act in 2000, governmental agencies, local autonomies, and construction public enterprises universally has taken the VE into consideration. In this circumstance, the scope that VE construction applied at 50 billion won projects from 2003 has been extended to 10 billion won projects in 2006. Therefore, the VE construction will be activated in the future. The cost savings and function improvement, which are the purpose of VE are not only construction public enterprises, but also every public client supported from government's budget or owned by the government. Therefore, the purpose of this study is to propose the improved process and performance index of VE for governmental agencies, local autonomies, and construction public enterprises which want to introduce or improve the VE process. This research also suggested the To-be design-phased VE process model. In addition, it suggested the To-be model of design management reflected the To-be design-phased VE process model, which is eliminated two problems reflected for the performance improvement of the As-is model of design management.

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.