• Title/Summary/Keyword: 해양 유전

Search Result 219, Processing Time 0.029 seconds

참전복에있어 마이크로사테라이트좌와 연사한 열성 치사유전자의 검출

  • 박철지;키지마아끼히로
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.233-234
    • /
    • 2003
  • 근교약세의 요인으로는 열성유해유전자의 호모 접합체화에 의한 적응성의 저하가 생각되어진다. 그 중에서도 가장 유해성이 높은 유전자로는 열성치사유전자가 있다. 그러나, 이러한 열성 치사유전자을 보유한 개체는 죽어버리기 때문에 직접적인 검출은 불가능하다. 따라서, 동조염색체의 호모화가 되는 교배실험과 표식유전자에 의한 연사분석이 필요하다. 본 연구는 참전복의 열성치사유전자의 유무을 명확히 파악하기 위하여 형매교배와 비형매교배을 포함한 전체교배를 하였으며, 참전복을 대상으로 개발한 마이크로사데라이트(microsatellite)좌을 유전표식으로 이용하여 각 교배구의 유전자형의 분리를 조사했다. (중략)

  • PDF

Draft genome sequence of Pseudoalteromonas sp. meg-B1 isolated from marine sediment (해양퇴적물로부터 분리된 Pseudoalteromonas sp. meg-B1의 유전체 분석)

  • Park, Soo-Je;Park, Sewook
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.280-282
    • /
    • 2018
  • Pseudoalteromonas sp. meg-B1 belonging to Gammaproteobacteria was isolated from marine sediment in Jeju island. Here, we report the draft genome sequence of strain meg-B1 with a size of approximately 4.15 Mbp and a mean G + C content of 41.2%. The draft genome included 3,606 coding sequences, and 9 ribosomal RNA and 94 transfer RNA genes. In the draft genome, genes (e.g. choline dehydrogenase) involved in the accumulation of compatible solutes required for survival in marine environments have been identified.

Theoretical Characteristics of the Probe with Respect to the Engine Oil States (엔진오일 상태에 대한 프로브의 이론 특성)

  • Kim, Young-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.22-24
    • /
    • 2012
  • Depending on the status of the engine oil, the dielectric constant is changed. Dielectric constant of oil is related to the characteristic impedance of the probe and the characteristic impedance of the probe determines the reflected signal. In this paper, we derive an equivalent circuit of the probe and using the dielectric constant obtained by measuring the capacitance, the theoretical reflection coefficient of the probe was calculated. In the results, if the engine oil is deteriorated, we can see that the reflection coefficient is increased.

해양플랜트 서비스산업 전문인력 양성방안 전략

  • An, Yo-Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.545-547
    • /
    • 2013
  • 해양플랜트 서비스 산업은 고상장 산업임에도 불구하고 국내기업의 진출은 거의 전무한 상태이다. 해양플랜트 수요는 고유가와 심해유전 개발의 확대로 산업 시장성은 충분하고 석유 가스 개발이외에도 방대한 해양자원 개발에 필수적이다. 해양플랜트 서비스 산업은 진입장벽이 매우 높은 산업이며 진출을 위해선 인력양성이 필수적이다. 또한 서비스 산업은 고수익 업종으로 선원 및 조선산업 유휴인력과 조선해야공학 전공자에게 고급 일자리 기회를 제공할 수 있다. 이에 본 원고에서는 우리나라 해양플랜트 서비스산업 현황과 전문인력 양성방안에 대해 제시하고자 한다.

  • PDF

Draft genome sequence of a marine Flavobacteria Flagellimonas eckloniae DOKDO 007T (해양 Flavobacteria Flagellimonas eckloniae DOKDO 007T 의 유전체 염기서열 해독)

  • Kwon, Yong Min;Kumar, Patra Ajit;Kim, Sang-Jin;Kwon, Kae Kyoung
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.460-462
    • /
    • 2018
  • Flagellimonas eckloniae DOKDO $007^T$, isolated from the rhizosphere of the marine algae Ecklonia kurome collected from Dokdo Island, South Korea, is a marine Flavobacteria belonging to the family Flavobacteriaceae. The genome consists of 4,132,279 bp, 3,527 coding sequences with 37.85% G + C contents and two contigs in one scaffold chromosome. This strain contains a gene encoding proteorhodopsin, as well as other retinal biosynthesis genes, allowing it to utilize sunlight as an energy source. The strain contained only few segment of flagellar constructing gene cluster and this is not consistent with genus name Flagellimonas, therefore, revision of the genus name is required.

A Genetic Algorithm for Network Clustering in Underwater Acoustic Sensor Networks (해양 센서 네트워크에서 네트워크 클러스터링을 위한 유전 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2687-2696
    • /
    • 2011
  • A Clustering problem is one of the organizational problems to improve network lifetime and scalability in underwater acoustic sensor networks. This paper propose an algorithm to obtain an optimal clustering solution to be able to minimize a total transmission power for all deployed nodes to transmit data to the sink node through its clusterhead. In general, as the number of nodes increases, the amount of calculation for finding the solution would be too much increased. To obtain the optimal solution within a reasonable computation time, we propose a genetic algorithm to obtain the optimal solution of the cluster configuration. In order to make a search more efficient, we propose some efficient neighborhood generating operations of the genetic algorithm. We evaluate those performances through some experiments in terms of the total transmission power of nodes and the execution time of the proposed algorithm. The evaluation results show that the proposed algorithm is efficient for the cluster configuration in underwater acoustic sensor networks.

Genetic Composition Analysis of Marine-Origin Euryarchaeota by using a COG Algorithm (COG 알고리즘을 통한 해양성 Euryarchaeota의 유전적 조성 분석)

  • 이재화;이동근;김철민;이은열
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.298-307
    • /
    • 2003
  • To figure out the conserved genes and newly added genes at each phylogenetic level of Archaea, COG (clusters of orthologous groups of proteins) algorithm was applied. The number of conserved genes within 9 species of Archaea was 340 and that of 8 species of Euryarchaeota was 388. Many of conserved 265 COGs, which are specific to Archaea and absent in Bacteria and S. cerevisiae, were concerned with 'information storage and processing' (94 COG, 35.5%) and 'metabolism' (82 COG, 30.9%). COGs related to these functions were assumed as highly conserved and permit peculiar life form to Archaea. It seemed that there was some difference in 'nucleotide transport and metabolism' and there was little difference in 'information storage and processing' between Euryarchaeota and Crenarchaeota. Marine-origin Euryarchaeota showed different conserved COGs with terrestrial Euryarchaeota. Conserved COGs, related to carbohydrate transport and metabolism and others, were different between marine- and terrestrial-origin Euryarchaeota. Hence it was assumed that their physiology might be different. This study may help to understand the origin and conserved genes at each phylogenetic level of marine-origin Euryarchaeota and may help in the mining of useful genes in marine Archaea as Manco et al. (Arch. Biochem. Biophy. 373, 182 (2000)).

Genome Survey and Microsatellite Marker Selection of Tegillarca granosa (꼬막(Tegillarca granosa)의 유전적 다양성 분석을 위한 드래프트 게놈분석과 마이크로새틀라이트 마커 발굴)

  • Kim, Jinmu;Lee, Seung Jae;Jo, Euna;Choi, Eunkyung;Kim, Hyeon Jin;Lee, Jung Sick;Park, Hyun
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.38-46
    • /
    • 2021
  • The blood clam, Tegillarca granosa, is economically important in marine bivalve and is used in fisheries industry among western Pacific Ocean Coasts especially in Korea, China, and Japan. The number of chromosomes in the blood clam is known as 2n=38, but the genome size and genetic information of the genome are not still clear. In order to predict the genomic size of the T. granosa, the in-silico analysis analysed the genomic size using short DNA sequence information obtained using the NGS Illumina HiSeq platform. As a result, the genomic size of T. granosa was estimated to be 770.61 Mb. Subsequently, a draft genome assembly was performed through the MaSuRCA assembler, and a simple sequence repeat (SSR) analysis was done by using the QDD pipeline. 43,944 SSRs were detected from the genome of T. granosa and 69.51% di-nucleotide, 16.68% trinucleotide, 12.96% tetra-nucleotide, 0.82% penta-nucleotide, and 0.03% hexa-nucleotide were consisted. 100 primer sets that could be used for genetic diversity studies were selected. In the future, this study will help identify the genetic diversity of T. granosa and population genetic studies, and further identify the classification of origin between homogenous groups.