• Title/Summary/Keyword: 해양 구조요소

Search Result 379, Processing Time 0.028 seconds

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF

Study on Structural Behavior of Pipe Loops Using CAESAR-II (CAESAR-II를 이용한 파이프 루프의 구조 거동 특성 연구)

  • Park, Chi-Mo;Yoon, Seong-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. The structural design of these pipes mostly relies on the commercial code, CAESAR-II, which was especially developed for the structural analysis of pipes. This study conducted stress analyses of the same pipe unit, including loops, using both CAESAR-II and MSC/NASTRAN, and compared the results to investigate the characteristics of CAESAR-II. A parametric study was then conducted of the various design variables of pipe loops using CAESAR-II to draw some useful information about the structural characteristics of the loops.

Seismic Analysis of Rectangular Liquid Storage Structures Ssing Fluid Elements (유체요소를 이용한 직사각형 유체 저장구조물의 지진해석)

  • 김영석;김제민;윤정방
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.46-54
    • /
    • 1992
  • In this paper, behavior of rectangular storage structures under earthquake loadings are investigated. Linear sloshing is assumed in this study. The effect of the wall flexibility is considered. Eulerian and lagrangian approaches are presented. The Eulerian approach is carried out by solving the boundary value problem for the fluid motion. In the lagrangian approach, the fluid as well as the storage structure is modelled by the finite element method. The fluid region is discretized by using fluid elements. The (1 $\times$ 1)-reduced integration is carried out for constructing the stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response spectra method. The numerical results show that the fluid forces on the wall obtained by two approaches are in good agreements. By including the effect of the wall flexibility, the forces due to fluid motion can be increased very significantly.

  • PDF

A Study for Rationalization of Lifting Lug Design of Ship Block (선박블록 탑재용 러그구조의 설계합리화를 위한 연구)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

Establishment of Fracture Mechanics Fatigue Life Analysis Procedures for Offshore Tubular Joints -part II : Fatigue Life Analysis for a Multi-Plan Tubular Joint (해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법의 설정)

  • Rhee, H. C.
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • 해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법이 개발되었다. 개발된 방법을 이용해서 2평면 K형 조인트에 대한 피로수명을 구체적인 파괴역학적 방법으로 산출 하였다. 이 분석을 위해 용접부위 표면균열의 응력확대 계수를 3차원 유한요소법에 의해 계산하였다. 계산된 결과에 의하면 용접부위 표면균열 첨단은 단순한 Mode I형태를 보이지 않고 Mode I, II, III이 복합된 형태임이 입증되었다. 계산된 응력확대 계수를 사용해서 16개의 용접부위균열 성장형태를 일반적인 피로균열 성장법칙을 적용해서 계산하였고, 균열성장의 안정분석을 통해 각 균열의 최종 파괴상태를 파괴해석도면(failure assessment diagram)법을 이용해서 계산하였다.

  • PDF

An Improved Structural Analysis Method for Ocean Transportation of Marine Structures (해양구조물의 해상 운동을 위한 개선된 구조 해석에 관한 연구)

  • Cho, Kyu-Nam;Kim, Dae-Yeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.48-58
    • /
    • 1990
  • 본 논문은 해양구조물 중 특히 자켓이 부선에 설치되어 운송되는 시스템에 대한 개선된 해상 운송 해석에 대한 고찰이다. 해석 방법의 개선은 파력에 의해 발생되는 부선 운동에 따른 관성력의 추계적 처리에 기본을 두어 얻어지고 있다. 이 방법은 소위 말하는 강체 부선 방법과 연체 부선 방법의 중간적이라고 할 수 있으며, 두가지 방법의 단점을 보완하였다. 전형적인 자켓-부선 시스템에 대하여 유한요소법을 이용하여 모델링한 후 본 해석 방법을 적용하여 해상운송 해석을 수행하였으며, 자켓-부선간 반력을 구하여 기존의 방법과 비교 검토하였다. 본 방법은 현실적이고 효과적임이 증명되었다.

  • PDF

A Study on the Spectral Fatigue Analysis for Offshore Structures (해양구조물의 스펙트럴 피로해석에 대한 사찰)

  • Jo, Gyu-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.59-72
    • /
    • 1990
  • 본 논문은 해양 구조물에 대한 확률적 기법을 이용한 스펙트럴 피로해석 방법에 대하여 기술하고 있다. 환경조건 특히 파도 및 관련된 해상상태, 파도 스펙트럼에 대하여 조사하였다. 각종 공식을 이용한 응력 집중계수와 유한요소법을 이용한 응력 집중계수 산출 방법 및 피로수명에 대한 그 영향에 대하여 연구하고, S-N선도의 선택과 해상상태의 간략화 문제등에 관해서도 다루었다. 마지막으로 스펙트럴 피로해석 기법을 응용한 실제 피로해석 사례 연구를 통하여 본 방법의 유용성을 입증하였다.

  • PDF

An Improved Finite Element Analysis Model of Offshore Cable-Supported Structures (해양 케이블 지지구조물의 구조해석을 위한 개선된 유한요소해석모델)

  • KIM SUN-HOON;SONG MYUNG-KWAN;NOH HYUK-CHUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.51-57
    • /
    • 2004
  • In this study, the improved three-dimensional analysis model designed for a more accurate analysis of marine cable-supported structures, is presented. In this improved analysis model, the beam elements, of which the stability function is derived using Taylor's series expansions, are used to model space frame structures, and the truss elements. The equivalent elastic modulus of the truss elements is evaluated on the assumption that the deflection curve of a cable has a catenary function. By using the proposed three-dimensional analysis model, nonlinear static analysis is carried out for some cable-supported structures. The results are compared with previous studies and show good agreement with their findings.

ALE Finite Element Analysis of the WIG Craft under the Water Impact Loads (ALE 유한 요소법을 적용한 위그선의 착수하중 해석)

  • Lee, Bok-Won;Kim, Chun-Gon;Park, Mi-Young;Jeong, Han-Koo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1082-1088
    • /
    • 2007
  • Demand for high speed sea transportation modes has been increased dramatically last few decades. The WIG(Wing-in-ground effect) is considered as next generation maritime transportation system. In the structural design of high speed marine vessels, an estimation of water impact loads is essential. The dynamic structural responses of the WIG excited by the water impact loads may bring an important contribution to their damage process. The work presented in this paper is focused on the numerical simulation of the water impact on the WIG craft when it lands. It is aimed to study the structural responses of the WIG craft subjected to the water impact loads. The Arbitrary Lagrangian-Eulerian (ALE) finite element method is used to simulate the water impact of the WIG craft during a landing phase. A full 3D shell element is used to model the WIG craft in carbon composites, and a developed FE model is used to investigate the effect of the water impact loads on the structural responses of the WIG craft. In the analysis, two different landing scenarios are considered and their effects on the structural responses are investigated.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF