• Title/Summary/Keyword: 해양정보

Search Result 2,598, Processing Time 0.028 seconds

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

Hierarchical Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로에 대한 계층적 시각화 기법)

  • Kim, JuHwan;Choi, Byung-Soo;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.611-613
    • /
    • 2021
  • Recently, research and development of quantum computers, which exceed the limits of classical computers, have been actively carried out in various fields. Quantum computers, which use quantum mechanics principles in a way different from the electrical signal processing of classical computers, have various quantum mechanical phenomena such as quantum superposition and quantum entanglement. It goes through a very complicated calculation process compared to the calculation of a classical computer for performing an operation using its characteristics. In order to utilize each element efficiently and accurately, it is necessary to visualize the data before driving the actual quantum computer and perform error verification, optimization, reliability, and verification. However, when visualizing all the data of various elements configured inside the quantum computer, it is difficult to intuitively grasp the necessary data, so it is necessary to visualize the data selectively. In this paper, we visualize the data of various elements that make up a quantum computer, and hierarchically visualize the internal circuit components of a quantum computer that are complicatedly configured so that the data can be observed and utilized intuitively.

  • PDF

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.

A study on the development of a ship-handling simulation system based on actual maritime traffic conditions (선박조종 시뮬레이터를 이용한 연안 해역 디지털 트윈 구축에 연구)

  • Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Kyunghun Park;Seong-Phil Ann
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.200-201
    • /
    • 2023
  • Digital twin technology is used in various fields as a method of creating a virtual world to minimize the cost of solving problems in the real world, and is also actively used in the maritime field, such as large-scale systems such as ships and offshore plants. In this paper, we tried to build a digital twin of coastal waters using a ship-handling simulator. The digital twin of the coastal waters developed in this way can be used to safely manage Korea's coastal waters, where maritime traffic is complicated, by providing a actual maritime traffic data. It can be usefully used to develop and advance technologies related to maritime autonomous surface ships and intelligent maritime traffic information services in coastal waters. In addition, it can be used as a 3D-based monitoring equipment for areas where physical monitoring is difficult but real-time maritime traffic monitoring is necessary, and can provide functions to safely manage maritime traffic situations such as aerial views of ports/control areas, bridge views/blind sector views of ships in operation.

  • PDF

A Study on the Development of Training Model by Enforcement of the IP Code(SOLAS Chapter XV)

  • MoonGyo Cho;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.145-153
    • /
    • 2024
  • Through the 106th session of the International Maritime Organization(IMO)'s Maritime Safety Committee(MSC), a mandatory safety training requirement for all personnel transferred or accommodated for offshore industrial activities was established and adopted under the name of SOLAS Chapter XV, IP(Industrial Personnel) Code. This regulation mandates pre-boarding safety training to enable individuals to anticipate and mitigate hazardous risks in navigation and operational environments. Consequently, the IP Code includes provisions regarding the training content for industrial personnel and regulations for the refusal of master who has a full responsibility for individuals who have not completed the required training(non-qualified industrial personnel). Referred to as the IP Code, this agreement is set to enter into force in July 2024, necessitating the establishment and operation of safety education for industrial personnel boarding ships before that date. Accordingly, this paper reviews the legal requirements related to training within IP code and analyzes the details of models including training objectives, target audience, duration, and course structure of safety trainings such as STCW, OPITO, GWO training, and other delegated training related to current ships. Additionally, it aims to propose a curriculum model for IP training courses which consists of a total of 16 hours over 2 days, offered by the Korea Institute of Maritime and Fisheries Technology, including teaching objectives, duration, and course structure.

Study of East Asia Climate Change for the Last Glacial Maximum Using Numerical Model (수치모델을 이용한 Last Glacial Maximum의 동아시아 기후변화 연구)

  • Kim, Seong-Joong;Park, Yoo-Min;Lee, Bang-Yong;Choi, Tae-Jin;Yoon, Young-Jun;Suk, Bong-Chool
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.51-66
    • /
    • 2006
  • The climate of the last glacial maximum (LGM) in northeast Asia is simulated with an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. Modern climate is simulated by a prescribed sea surface temperature and sea ice provided from NCAR, and contemporary atmospheric CO2, topography, and orbital parameters, while LGM simulation was forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced $CO_2$, and orbital parameters. Under LGM conditions, surface temperature is markedly reduced in winter by more than $18^{\circ}C$ in the Korean west sea and continental margin of the Korean east sea, where the ocean exposed to land in the LGM, whereas in these areas surface temperature is warmer than present in summer by up to $2^{\circ}C$. This is due to the difference in heat capacity between ocean and land. Overall, in the LGM surface is cooled by $4{\sim}6^{\circ}C$ in northeast Asia land and by $7.1^{\circ}C$ in the entire area. An analysis of surface heat fluxes show that the surface cooling is due to the increase in outgoing longwave radiation associated with the reduced $CO_2$ concentration. The reduction in surface temperature leads to a weakening of the hydrological cycle. In winter, precipitation decreases largely in the southeastern part of Asia by about $1{\sim}4\;mm/day$, while in summer a larger reduction is found over China. Overall, annual-mean precipitation decreases by about 50% in the LGM. In northeast Asia, evaporation is also overall reduced in the LGM, but the reduction of precipitation is larger, eventually leading to a drier climate. The drier LGM climate simulated in this study is consistent with proxy evidence compiled in other areas. Overall, the high-resolution model captures the climate features reasonably well under global domain.

  • PDF

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF

A Study on Trust and Commitment between Buyer and Supplier of Industrial Parts, and Their Usage of Information Technology (산업재 부품 구매자와 공급자의 신뢰와 몰입, 그리고 정보기술의 이용에 관한 연구)

  • Kim, Jong-Hun;Yun, Hui-Taek
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2006.08a
    • /
    • pp.47-68
    • /
    • 2006
  • This study aims to determine the association structure of the behavioral relationship variables, such as trust, commitment, cooperation, communication and coercive power, in the relationship between the buyers and suppliers of industrial parts. It also investigates the impact of the use of IT technologies on the relationships quality. Data was collected from 216 part suppliers of machinery, electronics and automobiles located in Incheon. Data supported all of the proposed hypotheses. First, it was confirmed that parts suppliers' trust in buyers leads to the commitment into relationships with buyers. Second, cooperation and communication showed a positive influence on parts suppliers' trust in buyers, and coercive power gave a negative influence on trust. Third, the use of IT technologies like Internet and E-Mail between parts suppliers and buyers was verified to have generally a positive influence on the quality of relationships. At the same time, cooperation and communication were confirmed to have a positive influence on each other, and cooperation and coercive power as well as communication and coercive power were confirmed to have negative influence on each other. This study is a pioneering attempt to examine the relationships between suppliers and buyers of industrial parts, and the influence IT technologies on the relationship quality. Also, the findings will be practically much helpful to find how to reinforce the relationships between parts suppliers and buyers.

  • PDF