• Title/Summary/Keyword: 해양소음

Search Result 196, Processing Time 0.027 seconds

A Thronging Response of the Shoal of Rudder Fish , Seriola Dumerili ( Risso ) to Audible Underwater Sound (수중 가청음에 대한 잿방어 어군의 유집 반응)

  • 이창헌
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.285-289
    • /
    • 1997
  • A Held experiment was carried out to confirm the effect of underwater sound on the luring of fish school of rudder fish in a set net at the coast of Cheju Island. The effects of the acoustic emission on the luring of fish school were observed at a cage around a set net fishing ground using a manufactured underwater speaker. Underwater sounds that were emitted for the luring of fish school were the pure sounds of which frequency were 300Hz and 400Hz, engine noise and swimming sound. The results of the observation are as follows : 1. The input and output wave forms of a manufactured underwater speaker in water tank were similar to those in measurement frequencies. The result of the observation indicated that it could be used for the purpose of the sound emission in measurement frequencies. 2. The effect of the emitted pure sound of 300Hz, 400Hz was remarkable for the luring of fish school in 2 minutes after the sound emission. The reaction of fish school was more sensitive to the pure sound of 400Hz than 300Hz. 3. The effect of the emitted engine noise was more remarkable than that of the pure sound for 3 minute continuously. On the feeding sound, fish formed a shoal and swimmed, but didn't gather around the underwater speaker. 4. The feeding and swimming sound spectra on rudder Hsh showed similar sound pressure distribution each other, they appeared low sound pressure in frequencies of 200-600Hz.

  • PDF

The Underwater Noise of Fishing Gears in Operation (망어구의 수중소음에 관한 연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • An underwater recording system was designed to measure the sound spectra of the underwater noises produced by fishing gears in operation. Recorded were noi~es from three types of fishing gears: an anchovy set net, three anchovy boat seine net and a stern trawlnet. Acoustic analysis were made using a heterodyne analyzer, a digital frequency analyzer and a level recorder. The no;'e produced by the anchovy set net was found in the high frequency region of the onset of ambient noise spectrum with a slope of - 6 dB/octave. Here the ambient noise spectrum is higher, though similar in shape, than Knudsen spectrum, and is attributed to the breaking action of the coastal wave. Measured noise spectra during the fishing operations of the anchovy boat seine nets are attributed to the background noise of the sea in the presence of the fishing vessels. The frequency distribution of the noise was 20~5, 000 Hz in the case of two steel anchovy boat seiners, and 20-3,000 Hz in the case of the wooden anchovy boat seiner. The predominant frequency range was 250~350 Hz and maximum sound pressure level was 122 dB (re $1\muPa$) in the case of the steel boat and ] 17 dB in the case of the wooden boat. The noises produced by the trawl fishing gears are remarkably higher than the background noi~e in the presence of the fishing vessel. The frequency distribution of the noi~e was 20-6,300 Hz. The predominant frequency range was 100~200 Hz and maximum sound pressure level was 137 dB ( re $1\muPa$) . The noise spectra were not so much different from that caused by vibrations of the towing cable and the structure of the ground rope of the trawl net towed in an experimental tank.

  • PDF

Boarding Environment of Training Ship KAYA to the Noise during the Voyage (실습선 가야호의 항해 중 선내 소음에 대한 승선환경)

  • Kim, Min-Son;Shin, Hyeon-Ok;Kim, Min-Seok;Hwang, Bo-Kyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.218-230
    • /
    • 2010
  • This study was conducted to determine the effect of the noise level on the boarding environment in a stern trawl ship, KAYA(GT: 1,737 tons, Pukyong National University). We measured the noise level at a working, an accommodation and a teaching area, and an engine space on January 9, 2010 while the KAYA was sailing on a liner sea route. At the working area, the ranges of the noise rating number(NRN) and the NRN determination frequency(FNRN) were from 44 to 73 and from 1000 to 2000Hz, respectively. The results were generally satisfied the criteria of the International Maritime Organization(IMO). The noise level at the area, except the radio room(w2), was exceeded the criteria(50dB(A)) for the efficient studying and working. The noise level at the engine control room and the machine workshop was respectively exceeded 1.2dB and 9.5dB than the criteria caused the conversation disturbance (70dB(A)). At the accommodation, NRN and FNRN were from 49 to 54 and from 1000 to 4000Hz, respectively. The noise level was below the criteria of IMO, but above 40dB(A) caused the sleep disturbance. At the teaching area, NRN and FNRN were from 44 to 63 and from 500 to 2000Hz, respectively. The noise level was exceeded than the criteria(50dB(A)) for the efficient studying. At the engine space, NRN and FNRN were from 95 to 100 and from 2000 to 4000Hz, respectively. The noise level was above the criteria of IMO(90dB(A)) for the residence, while it was not exceeded 110dB(A) for the transient.

Development and Applications of Impact Vibration Absorbers (1st Report , Fundamental Experiments) (충격식 동흡진기의 개발 및 응용에 관한 연구(제 1보, 기초실험))

  • Yang, Bo-Suk;Kim, Joung-Wan;Kim, Won-Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.1
    • /
    • pp.24-28
    • /
    • 1989
  • This paper describes a fundamental method to suppress vibration of a structure under excitation by attaching a impact absorber. The influence of the shape of impact absorber, such as weight of add mass, impact clearance, contacting area and the exciting frequency on suppressing vibrations of the structure is investigated. The effectiveness of the proposed vibration absorber is demonstrated experimentally.

  • PDF

Acoustical characteristics of prototype mechanical white noise generator as an underwater sound source (시험 제작한 기계식 백색소음기 수중음원의 음향적 특성)

  • Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.244-251
    • /
    • 2014
  • This paper describes a prototype mechanical white noise generator has a source level of more than 170.0 dB (re $1{\mu}Pa$ at 1 m) at the frequency range of 10 Hz to 100 kHz. The results of performance evaluation of the generator are as follows. The average source level of the generator measured by a step of $15^{\circ}$ in horizontal (0 to $360^{\circ}$, 25 points) was 185.2 (SD (standard deviation): 2.3) dB (re $1{\mu}Pa$ at 1 m). The maximum and minimum source levels were appeared at the frequency range of 2.5 to 5.0 kHz and around 100 kHz, respectively. The average source levels at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ were 162.9 (SD: 10.6), 168.4 (SD: 10.0), 162.1 (SD: 9.1) and 166.5 (SD: 11.1) dB (re $1{\mu}Pa$ at 1 m). The average source level measured by a step of $30^{\circ}$ in vertical was 184.9 (SD: 2.2) dB (re $1{\mu}Pa$ at 1 m). The relative maximum variation width of the source levels in horizontal and in vertical measurement were less than 7.0 dB and 1.0 dB, respectively.

Range estimation of underwater moving source using frequency-difference-of-arrival of multipath signals (다중 경로 신호의 도달 주파수 차를 이용한 수중 이동 음원의 거리 추정)

  • Park, Woong-Jin;Kim, Ki-Man;Son, Yoon-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.154-159
    • /
    • 2019
  • When measuring the radiating noise of an underwater moving source, the range information between the acoustic source and the receiver is an important evaluation factor, and the measurement standards such as a receiver position, a moving source depth and a speed are set. Although there is a method of using the cross correlation as a method of finding the range of the underwater moving source, this method requires a time synchronization process. In this paper, we proposed the method to estimate the range by comparing the Doppler frequency difference of the theoretically calculated multipath signal with the Doppler frequency difference of the multipath signal estimated from the received signal. The proposed method does not require a separate time synchronization process. Simulations were performed to verify the performance, and the ranging error of the proposed method reduced by about 95 % than that of the conventional method.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

A study on DEMONgram frequency line extraction method using deep learning (딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구)

  • Wonsik Shin;Hyuckjong Kwon;Hoseok Sul;Won Shin;Hyunsuk Ko;Taek-Lyul Song;Da-Sol Kim;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.78-88
    • /
    • 2024
  • Ship-radiated noise received by passive sonar that can measure underwater noise can be identified and classified ship using Detection of Envelope Modulation on Noise (DEMON) analysis. However, in a low Signal-to-Noise Ratio (SNR) environment, it is difficult to analyze and identify the target frequency line containing ship information in the DEMONgram. In this paper, we conducted a study to extract target frequency lines using semantic segmentation among deep learning techniques for more accurate target identification in a low SNR environment. The semantic segmentation models U-Net, UNet++, and DeepLabv3+ were trained and evaluated using simulated DEMONgram data generated by changing SNR and fundamental frequency, and the DEMONgram prediction performance of DeepShip, a dataset of ship-radiated noise recordings on the strait of Georgia in Canada, was compared using the trained models. As a result of evaluating the trained model with the simulated DEMONgram, it was confirmed that U-Net had the highest performance and that it was possible to extract the target frequency line of the DEMONgram made by DeepShip to some extent.

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.