• 제목/요약/키워드: 해양배출

검색결과 503건 처리시간 0.026초

하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구 (A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant)

  • 김은혁;박명수;구슬기
    • 유기물자원화
    • /
    • 제30권4호
    • /
    • pp.5-13
    • /
    • 2022
  • 현대의 환경문제는 다량의 폐기물의 발생과 무분별한 에너지의 소비로 인한 환경오염이 가속화 되고 있다는 것이다. 대표적인 에너지 생산 연료인 화석연료는 에너지를 생산하는 과정에서 연소가 이루어져 다량의 온실가스가 발생하고 최종적으로 기후변화를 야기한다. 또한 전 세계적으로 발생하는 폐기물의 양도 지속적으로 증가하고 있으며 처리하는 과정에서 환경오염이 발생하고 있다. 이와 같은 문제들을 동시에 해결하기 위한 방법 중 하나는 유기성 폐기물의 에너지화 및 감량화이다. 하수처리장에서 발생하는 하수슬러지는 해양매립이 전면 금지된 이후로 다양하게 처리되고 있으나, 그 발생량은 지속적으로 증가하는 추세이다. 하수슬러지는 유기물을 다량 함유하고 있어 혐기소화를 통하여 하수슬러지를 에너지화 하고 최종 배출되는 폐기물을 감량화 하는 것이 바람직하다. 하지만, 잉여슬러지의 경우 대부분이 하수처리에 이용되었던 미생물 덩어리로써 잉여슬러지가 혐기성소화 되기 위해서는 먼저 미생물의 세포벽이 파괴되어야 하는데 세포벽 파괴에는 많은 시간이 요구되기 때문에 혐기성 소화 과정만으로는 높은 바이오가스 생산율이나 폐기물 감량율을 달성할 수 없다. 따라서 잉여슬러지를 가용화하는 전처리 공정이 필요하며, 여러 가지 가용화 공법 중에서 열적 가용화 공정이 가장 효율적인 것으로 검증되었고, 혐기성소화 공정의 전처리 과정으로써 열적가용화 공정을 이용하여 잉여슬러지에 포함된 세포벽을 파괴한 후 전처리 된 잉여슬러지를 혐기성소화 함으로써 높은 바이오가스 생산율과 폐기물 감량율을 달성할 수 있다. 본 연구에서는 열적 가용화장치를 통하여 TS 10%의 농축 잉여슬러지를 전처리하는데 있어서 체류시간 및 운전온도 변수에 따른 가용화 특성에 대한 연구를 수행하였다. 열적 가용화장치의 체류시간에 대한 실험변수는 운전온도를 160 ℃로 고정한 상태에서 각각 30분, 60분, 90분, 120분이었다. 실험 결과로 도출된 TCOD와 SCOD를 통해 계산된 가용화율은 각각 12.11%, 20.52%, 28.62%, 31.40% 순으로 증가하였다. 또한, 운전온도에 따른 변수는 반응시간을 60분으로 고정한 상태에서 각각 120℃, 140℃, 160℃, 180℃, 200℃였으며 가용화율은 각각 7.14%, 14.52%, 20.52%, 40.72%, 57.85% 순으로 증가하였다. 이 외에 TS, VS, T-N, T-P, NH4+-N, VFAs를 분석하여 농축 잉여슬러지를 대상으로 하는 열적 가용화 특성에 대한 평가를 수행 했으며, 그 결과 TS 10%의 농축 잉여슬러지에 대한 열적 가용화를 통하여 30% 이상의 가용화율을 얻기 위해서는 운전온도를 160℃로 고정할 경우 120분의 체류시간이 필요하며, 운전시간을 60분으로 고정할 경우 170℃ 이상의 운전온도가 요구되어 진다.

DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이 (Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding)

  • 박혜진;변서연;박상율;이혁제
    • 환경생물
    • /
    • 제40권4호
    • /
    • pp.464-476
    • /
    • 2022
  • 가속화되는 기후변화로 인해 전 세계 각지의 연안에서 해조류 대발생(macroalgal bloom)이 빈번하게 일어나고 있다. 특히, 녹조류의 대량 증식으로 인한 녹조(파래) 대발생(green tide) 현상은 지역 경제뿐만 아니라 연안 생태계 환경에도 막대한 피해를 주고 있다. 우리나라의 경우 2000년대부터 제주도 동북부 해안을 중심으로 파래대발생이 연중 지속적으로 관찰되며, 최근에는 남해와 동해 일대에서도 국지적으로 관찰되고 있다. 파래대발생의 원인 종은 갈파래속(Chlorophyta; genus Ulva)으로 알려져 있으며, 기후변화의 영향으로 해수 온도의 상승과 담지하수 및 인근지역 오염수 배출로 인한 질소와 인의 대량 유입으로 인한 영양염류 증가가 주요 원인으로 추정되고 있다. 갈파래속은 환경변화에 의해 형태적 발현의 가소성이 높은 표현형 적응성(phenotypic plasticity) 때문에 형태적 종 동정은 거의 불가능하다. 갈파래류 종 판별을 위해서는 분자유전학적 분석이 수행되어야 하나 현재 분자데이터를 이용한 갈파래 종 분포, 군집구조와 같은 생태조사연구는 매우 미흡한 실정이다. 파래대발생 피해 저감을 위해서는 파래대발생 주요 종들을 분자계통학적 분석을 통하여 정확하게 파악하는 것이 우선이다. 선행 연구에서는 2015년 파래대발생을 일으키는 주요 종 파악을 위해 핵 DNA ITS와 엽록체 DNA tufA (chloroplast elongation factor Tu) 유전자를 이용하여 분자계통학적 분석을 수행하였으며, 종 동정에는 tufa 유전자가 더 정확한 결과를 나타냈다. 따라서 본 연구에서는 tufA 유전자를 이용해 2015~2020년 제주도 연안에서 파래대발생을 일으키는 주요 구성 갈파래 종의 군집구조 및 종 다양성을 파악하고 종 구성의 시간적 변이를 확인하고자 하였다. 본 연구에서는 온대와 아열대 해역에서 주로 생장하는 것으로 알려진 큰갈파래와 구멍갈파래 종이 파래대발생의 주요 구성 종임을 확인하였다. 구멍갈파래는 2015년(35.75%)에서 2020년(36.18%) 기간 상대빈도의 변화가 거의 없고 안정적으로 유지되었으나, 큰갈파래의 경우 2015년(20.77%)에 비해 2020년(36.84%) 빈도가 대략 16% 증가하였다. 이러한 결과는 기후변화와 연관된 평균 해수면 온도의 상승에 큰갈파래의 높은 성장률 및 적응력과 관련이 있을 수 있으며, 제주도의 갈파래 군집을 구성하는 종 수는 2015년에는 9종이었으나 2020년에는 7종으로 감소하는 것으로 나타났다. 또한, 유럽 원산지 외래종인 긴통갈파래와 굽은갈파래가 2015년과 2020년 모두 제주 연안에서 관찰되어 이 두 종에 대한 향후 지속적인 모니터링이 필요하다. 본 연구의 결과는 우리나라 연안에서 발생하는 파래대발생의 저감을 위해 주요 종인 갈파래속(genus Ulva)에 대한 분자유전학적 데이터에 대한 정보를 제공하고자 한다.

천연기념물 진주 충무공동 익룡·새·공룡발자국 화석산지의 오염물 형성 메커니즘과 관리방안 (Contaminant Mechanism and Management of Tracksite of Pterosaurs, Birds, and Dinosaurs in Chungmugong-dong, Jinju, Korea)

  • 최명주;원상호;이태종;이성주;공달용;이명성
    • 자원환경지질
    • /
    • 제56권6호
    • /
    • pp.715-728
    • /
    • 2023
  • 익룡 발자국의 개체 및 밀집도 측면에서 세계 최대 규모로 알려진 진주 충무공동 익룡·새·공룡발자국 화석산지는 2011년 천연기념물로 지정된 이래, 2018년 일부 화석층을 현장 보존하기 위해 보호각을 설치하였다. 이 중 제2보호각에 관리중인 화석층은 기 보고된 발자국 중 약 17%에 달하는 익룡·수각류·조각류 발자국(총 679개)이 단일 층준에서 발견되어 학술적 가치가 크지만 물리적, 화학적 손상이 지속적으로 발생하여 발자국의 관찰에 어려움이 있다. 특히 화석층 표면을 피복하는 유백색 오염물은 석고와 대기오염물로 구성된 복합체의 누적현상에서 기인한다. 오염물을 구성하는 석고는 화석층 하부층준에서 기원한 칼슘과 잔디의 생육활동으로 공급되는 황이 보호각 후방의 잔디가 식재된 토양층에서 집수된 지하수에 의해 용출되고, 보호각의 일대의 수분 순환 과정에서 화석층 표면에 증발잔류하며 결정화된다. 또 다른 오염물 구성체인 화분·광물 등은 분진 배출이 어려운 보호각 갤러리창을 통해 풍성으로 유입된다. 따라서 상이한 기원을 가진 두 오염물로부터 화석층을 보존하기 위해서는 보호각의 수분 및 대기 순환 제어와 지속적인 오염물 제거가 필요하다. 분진상의 석고와 대기 오염물은 스팀 세정법으로 충분한 제거 효과가 있으며, 암회색 셰일인 화석층은 레이저 흡수능이 커 흔적화석과 퇴적구조의 물리적 손실을 동반하는 레이저 세정법은 가급적 지양하는 것이 바람직하다.