• Title/Summary/Keyword: 해양과학기술

Search Result 2,023, Processing Time 0.024 seconds

Spatial and Temporal Variation of Dissolved Inorganic Radiocarbon in the East Sea (동해 용존무기탄소 중 방사성탄소의 분지별 비교 및 시간에 따른 변화)

  • Sim, Bo-Ram;Kang, Dong-Jin;Park, Young Gyu;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This study examined the spatial and temporal variation of dissolved inorganic radiocarbon in the East Sea. Five vertical profiles of radiocarbon values were obtained from samples collected in 1999 in three basins (Japan Basin, Ulleung Basin, Yamato Basin) of the East Sea. Radiocarbon values decreased from 63- 85‰ at the surface to about -50‰ with increasing depth (up to 2,000 m) and were nearly constant in the layer deeper than 2,000 m in all basins. Radiocarbon values did not show significant basin-to-basin differences in the surface and the bottom layers. In the intermediate layer (200-2,000 m), however, they decreased in the order of Japan Basin > Ulleung Basin > Yamato Basin, which is consistent with the suggested circulation pattern in the intermediate layer of the East Sea. Radiocarbon was found to have decreased at ~2%/year in the surface water of the East Sea. In contrast, in the interior of the East Sea, radiocarbon values have increased with time in all three basins. In the Central Water, the annual increase rate was about 3.3‰, which is faster than the rates in the Deep and Bottom Waters. The radiocarbon in the Deep and Bottom Waters had increased until mid-1990s, after which time it has been almost constant.

Seasonal Characteristics of Phytoplankton Distribution in Asan Bay (아산만 식물플랑크톤의 계절별 군집 분포 특성)

  • Yi, Sang-Hyon;Sin, Yong-Sik;Yang, Sung-Ryull;Park, Chul
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • Samples were collected from five stations in February, May, July, and September 2004 to investigate seasonal variations in the phytoplankton community and the relationship between dominant genera and environmental factors in Asan Bay. In February, microphytoplankton contributed 80% to the total chlorophyll a. Diatom dominated the phytoplankton community, accounting for 85.9% of the total cell number, followed by dinoflagellates (6%). Dominant species were Skeletonema costatum and Thalassiosira spp. Abundant diatom, including S. costatum and Thalassiosira spp., may be affected by water temperature and silicate at Station 1 and 2 in February 2004. In May, the nanophytoplankton contribution to total phytoplankton was higher than in other seasons. However, abundance of S. costatum and Thalassiosira spp. decreased, since the growth of S. costatum and Thalassiosira spp. might be limited by phosphates (P) resulting from low P concentration and a high DIN:DIP ratio in the outer region. In July, dominant phytoplankton groups were diatom (39%), cryptophyceae (28%), and cyanophyceae (20%). Dominant genera were Oscillatoria spp. and phytoflagellate of a monad type in the inner region (Station 1 and 2), whereas S. costatum was dominant in the outer region (Station 4 and 5). In September, dominant phytoplankton were diatom (69%) and cryptophyceae (28%). Dominant genera were phytoflagellate of the monad type, S. costatum in the inner region, while Chaetoceros spp. was dominant in the outer region.

Organic Matter and Hydraulic Loading Effects on Nitrification Performance in Fixed Film Biofilters with Different Filter Media

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.277-286
    • /
    • 2003
  • Nitrification performance of fixed film biofilters using coarse sand, loess bead, or styrofoam beads in biofilter columns 1 meter high and 30cm in diameter were studied at different hydraulic and organic matter loading rates. Synthetic wastewater was supplied to the culture tank in order to maintain desired TAN concentrations in inlet water to biofilters. All the biofilters were conditioned 5 months before start of sampling. TAN and $NO_2-N$ conversion rates increased with an increase in the hydraulic loading rate (HLR). However, the improvement in biofilter performance was not linearly correlated to HLR in styrofoam bead filters. This is mainly due to the characteristics of the styrofoam beads used. TAN conversion rates of sand filters increased with the increase of HLR up to $200m^3/m^2$. per day. No increase in the TAN conversion rate was observed at the highest HLR since flooding on the media surface took place. HLR had a significant impact on the TAN conversion rates in loess bead filter up to the highest HLR tested (P<0.05). TAN conversion rates were much less at organic matter loading rates of 9 and 18kg $O_2/m^3$ per day than those without the addition of organic matter in styrofoam bead filters. The addition of glucose resulted in a reduction of the TAN conversion rate from 540 to 284g $TAN/m^3$ per day. No significant difference of TAN conversion rates between the two organic matter loading rates was found (p<0.05). This indicates that the impact of organic matter on nitrification becomes less and less sensitive with an increase in the COD/TAN ratio. At an organic matter loading rate of 9kg $O_2/m^3$. per day, a great reduction of TAN conversion rates was observed in sand filters and loess bead filters. Clearly, organic matter can be one of the most Important Impacting factors on nitrification. $NO_2-N$ conversion rates showed a similar trend for TAN. Based on the TAN and nitrite conversion rates, styrofoam beads showed the best performance among the three filter media tested. Also, the low gravity and price of styrofoam beads make the handling easier and more cost-effective for commercial application. The results obtained at the highest organic matter loading rates can be used in the biofilter design in recirculating aquaculture system.

Distribution of Phytoplankton Biomass and Nutrient Concentrations in the Barents and Kara Seas during the 1st Korea-Russia Arctic Expedition in August, 2000 (제 1차 한-러 북극해 탐사(2000년 8월) 동안의 바렌츠해와 카라해의 식물플랑크톤 현존량 및 영양염 분포)

  • Kang, Sung-Ho;Chung, Kyung-Ho;Kang, Jae-Shin;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • During the 1st Korea-Russia Arctic Expedition from 3 to 26 August, 2000 phytoplankton biomass and nutrient concentration were measured in the Barents and Kara Seas. Total of 57 surface samples were collected f3r the phytoplankton related measurements. Chlorophyll a (chi a) concentraitons were measured to investigate the relations between physico-chemical factors and phytoplankton biomass distribution. Chl a values ranged from 0.14 to $2.34mg\;m^{-3}$ (mean of $0.65{\pm}0.42mg\;m^{-3}$) over the surface stations. The elevated values of the chi a concentrations $(1.49{\sim}2.34mg\;m^{-3})$ were found in the southeastern Barents Sea near the Pechora River. Nanoplanktonic $(<20{\mu}m)$ phytoflagellates were the important contributors for the increase of the chi a. The nano-sized phytoflagellates accounted for more than 80% of the total chi a biomass in the study area. Mean chi a concentration in the Barents Sea $(0.72{\pm}0.57 mg\;m^{-3})$ was higher than in the Kan Sea $(0.52{\pm}0.45mg\;m^{-3})$, but there was no big difference between two areas. Surface temperatures and salinities ranged from 4.1 to $11.7^{\circ}C$ (mean of $8.8{\pm}1.9^{\circ}C$) and from 23.8 to 32.5psu (mean of $30.3{\pm}1.9^{\circ}C$ psu), respectively. The physical factors were not highly correlated with phytoplankton distribution. It is speculated that the insignificant correlation between phytoplankton biomass and physical factor was due to the same current which introduced similar water mass with higher water temperature and lower salinity into the study area. The mean values of major nutrients such as ammonia, nitrite, nitrate, phosphate, and silicate were $0.42{\pm}0.31{\mu}M,\;0.10{\pm}0.03{\mu}M,\;1.44{\pm}1.03{\mu}M,\;0.35{\pm}0.12{\mu}M,\;10.99{\pm}3.45{\pm}M$, respectively. The relations between phytoplankton biomass and nutrient concentration were not close, indicating that the surface nutrient concentrations during the study seem to be controlled by other physical factors such as input of fresh water (i.e. dilution effects).

Meiobenthic Animals of the Tidal Flat Near the Yeonggwang Nuclear Power Plant (영광원전 주변 해역의 조간대 갯벌에 서식하는 중형저서생물)

  • Kim, Dong-Sung;Choi, Jin-Woo;Kang, Rae-Seon
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Meiobenthic community structure of tidal flats near the Yeonggwang Nuclear Power Plant have studied during summer (June) and fall (October) 1997. Examination of sediment samples collected along the transects showed that there were 18 different types of meiobenthos in the study area. The most abundant meiobenthic animals belonged to Phylum Nematoda in both seasons and all transects. However, sediment samples collected near discharge areas, transects A and B, showed relatively lower abundance than other general coastal areas. Another abundant meiobenthic organism is benthic Harpacticoids which is very sensitive to any environmental changes. Polycheats and Ostracods were next abundant meiobenthos which also showed the difference between the study area and other general coastal areas. Only transect C maintained similar meiobenthic abundance and diversity to other coastal areas. Horizontal distribution for transects A and B showed higher densities in upper and mid tidal flat zones. On the other hand, transect C which is located furtherest from the discharges showed an increasing trend in abundance from upper to lower areas. For size distribution analyses showed that animals which fit into the meshsize of 0.125 mm were abundant, Vertical distribution of meiobenthic animals within the sediments for both sampling seasons showed the highest individual numbers in the surface sediment layers of 0-1 cm depth and showed a decreasing trend as sediment gets deeper. Each class of meiobenthos had different vertical profiles. When comparing survey transects A and B with other similar tidal flat areas, this sites seems to a very unstable environment of tidal flats near the Yeonggwang Nuclear Power Plant.

  • PDF

Distribution of Nutrients and Phytoplankton Biomass in the Area Around the South Shetland Islands, Antarctica (남극 남쉐틀랜드군도 주변 해역의 영양염과 식물플랑크톤 생물량 분포)

  • Kim, Dong-Seon;Kang, Sung-Ho;Kim, Dong-Yup;Lee, Youn-Ho;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.77-95
    • /
    • 2001
  • Temperature, salinity, nutrients, chlorophyll-a, and primary production were measured within the upper 200 m water column in the area around the South Shetland Islands in January, 2000. Surface temperature was relatively high in the Drake Passage north of the South Shetland Islands and low in the northeastern area of the Antarctic Peninsula. In contrast, surface salinity was low in the Drake Passage and increased toward the Antarctic Peninsula, reaching the maximum value in the northeastern area of the Antarctic Peninsula. Surface nutrients were low in the Drake Passage and high in the area near the South Shetland Islands. Surface chlorophyll-a was also low in the Drake Passage and near the Antarctic Peninsula and high in the area of the northern King George Island. The study area could be classified as four geographical zones based on the characteristic shape of the T/S diagrams;the Drake Passage, the Bransfield Strait, the mixed zone, and the Weddell Sea. Each geographical zone showed apparently different physical, chemical, and biological characteristics. Phytoplankton biomass was relatively low in the Drake Passage and the Weddell Sea and high in the Bransfield Strait and the mixed zone. The low phytoplankton biomass in the Weddell Sea could be explained by the low water temperature and deep surface mixing down to 200 m. The high grazing pressure and low availability of iron could be responsible for the low phytoplankton biomass in the Drake Passage.

  • PDF

Morphological Features of Bedforms and their Changes due to Marine Sand Mining in Southern Gyeonggi Bay (경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok;Jung, Seom-Kyu;Jang, Seok;Jang, Nam-Do;Oh, Jae-Kyung
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.337-350
    • /
    • 2010
  • This study conducted sedimentological and geophysical surveys for 3 years (2006-2008) in southern Gyeonggi Bay, Korea to elucidate temporal changes in subaqueous dune morphology on a sand ridge trending northeast to southwest that has been excavated by marine sand mining. The sand ridge (~20 m in height, ~2 km in width and 3~4 km in length) has a steep slope on the NW side and a gentle slope on the SE side, creating an asymmetric profile. Large (10~100 m in length) and very large (>100 m in length) dunes occurring on the SE side of the ridge show a northeastward asymmetrical shape, whereas dunes on the NW side destroyed by marine sand mining display a southwestward asymmetry. The comparison between Flemming (1988)'s correlation and the height-length correlation of this study indicates that tidal current and availability of sand sediment are major controlling factors to the development and maintenance of dunes. Depth and sedimentary characteristics (grain size) are not likely to be major controlling factors, but indirectly influence dune growth by hydrological and sedimentary processes. The length and the height of dunes decrease toward the southeastern trough away from the crest of the ridge. These features result from the decrease of tidal current and sediment availability. The length and the height of dunes on the southeast side decrease gradually over time. This is a result of the interaction between tidal current and the decrease in sediment availability due to sediment extraction by marine sand mining. Marine sand mining has destroyed the dunes directly, causing irregular shapes of shorter length and lower height. The coarse fraction of suspended sediments is transported and deposited very close to the sand pit. By contrast, relatively fine sediments are transported by the tidal current and deposited over a wide range by the settling-lag effect, resulting in a decrease of sediment grain size in the area where suspended sediments are deposited. In addition, marine sand mining, decreases the height of dunes. Therefore, morphological and sedimentological characteristics of dunes around the sand pits will be significantly changed by future sand mining activities.

Effect of Water Temperature on Ammonia Excretion of Juvenile Dark-banded Rockfish Sebastes inermis (볼락 Sebastes inermis 치어의 암모니아 배설에 미치는 수온의 영향)

  • Oh, Sung-Yong;Choi, Sang-Jun
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.231-238
    • /
    • 2009
  • A study was carried out to investigate the effect of water temperature on daily pattern and rate of total ammonia nitrogen (TAN) excretion in juvenile dark-banded rockfish Sebastes inermis (mean body weight: $14.8{\pm}0.3g$) under fasting and feeding conditions. Fish were acclimated over 10 days under three different water temperatures (15, 20 and $25^{\circ}C$). After 72 hours of starvation, fasting TAN excretion was measured at each temperature. To investigate post-prandial TAN excretion, fish were hand-fed with a commercial diet containing 47.7% crude protein for 7 days, two times daily at 09:00 and 17:00 hr. Water was sampled from both the inlet and outlet of each chamber every 2 hrs over a 24 hr period. Both fasting and post-prandial TAN excretion increased with increase in water temperature (P<0.05). Mean fasting TAN excretion rates at 15, 20 and $25^{\circ}C$ were 8.1, 9.0 and 9.2 mg TAN kg $fish^{-1}h^{-1}$, respectively. The value of $15^{\circ}C$ was lower than those of 20 and $25^{\circ}C$ (P<0.05), but there was no significant difference between $20^{\circ}C$ and $25^{\circ}C$ (P>0.05). Mean post-prandial TAN excretion rates at 15, 20 and $25^{\circ}C$ were 20.1, 22.9 and 23.4 mg TAN kg $fish^{-1}h^{-1}$, respectively. A peak post-prandial TAN excretion rate occurred after 12 hrs from the first feeding at $15^{\circ}C$ (mean 28.7 mg TAN kg $fish^{-1}h^{-1}$), $20^{\circ}C$ (33.7 mg TAN kg $fish^{-1}h{-1}$) and $25^{\circ}C$ (36.8 mg TAN kg $fish^{-1}h{-1}$), respectively. The TAN loss for ingested nitrogen at $15^{\circ}C$ (36.2%) was lower than that of $20^{\circ}C$ (40.8%) and $25^{\circ}C$ (41.7%). Based on overall results, water temperature exerts a profound influence on the nitrogen metabolism of juvenile dark-banded rockfish.

Dissolved Oxygen at the Bottom Boundary Layer of the Ulleung Basin, East Sea (동해 울릉분지 해저 경계면의 용존산소)

  • Kang, Dong-Jin;Kim, Yun-Bae;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.439-448
    • /
    • 2010
  • General consensus on typical vertical profile of dissolved oxygen in the Ulleung Basin is that dissolved oxygen concentration beyond 300 m decreases with increasing depth. However, the results of our observations in 2005 and 2006 revealed three different dissolved oxygen distribution types in the deep layer of the Ulleung Basin. The first type showed oxygen concentration decreasing with increasing depth (Type-1), the second showed oxygen concentration decreasing very sharply near the bottom boundary layer but constant in the bottom adiabatic layer (Type-2), the final was of the oxygen minimum layer above the bottom boundary layer (Type-3). Type-2 was the most common pattern in the Ulleung Basin. Type-1 was most common close to the Japan Basin, including the Ulleung Interplane Gap, while Type-3 was found around Dok do. Oxygen Consumption Rate (OCR) at surface sediment estimated using the dissolved oxygen distribution at the bottom boundary layer was $0.2{\sim}5.8\;mmol{\cdot}m^{-2}d^{-1}$, which coincided with OCR from direct sediment incubation. This implies that organic matter decomposition at surface sediment may play an important role in dissolved oxygen distribution patterns at the bottom boundary layer of the Ulleung Basin.

Distributional Characteristics and Carrying Capacity of the Potentially Risky Species Noctiluca scintillans at International Korean Seaports (잠재적 위해종인 야광충의 항만 분포 특성과 수용능력)

  • Kang, Jung-Hoon
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.449-462
    • /
    • 2010
  • Ongoing port baseline surveys are essential for developing ballast water management procedures in order to control unwanted or potentially risky species. Seasonal distributional patterns of marine dinoflagellate Noctiluca scintillans internationally recognized as harmful species and the related environmental factors were surveyed at Incheon, Gwangyang and Ulsan seaports in Korea from 2007 to 2009. The above three seaports were chosen because of their status as the busiest in Korea and characterized by their different bioregions. Average temperature ranged from $2.08^{\circ}C$ in winter to $26.39^{\circ}C$ in summer at Incheon, $7.22^{\circ}C$ in winter to $25.77^{\circ}C$ in summer at Gwangyang, and $11.59^{\circ}C$ in winter to $21.67^{\circ}C$ in summer at Ulsan during the study period. Average salinity varied from 26.88 in winter to 31.25 in summer at Incheon, 22.83 in winter to 33.41 in summer at Gwangyang, and 30.04 in winter to 33.90 in summer at Ulsan. Noctiluca scintillans appeared consistently at all ports during the study period, indicating its eurythermal and euryhaline nature. The highest abundances (21,813 to 41,753 $inds{\cdot}m^{-3}$) of N. scintillans were observed in May 2008 and 2009 at the outer stations of Incheon port. Abundances of between 10,000 and 30,000 $inds{\cdot}m^{-3}$ were only observed at the innermost station of Ulsan in May, while abundances of between 10,000 and 40,000 $inds{\cdot}m^{-3}$ were frequently observed throughout all stations at Gwangyang during the study period, coinciding with consistently high concentration of chlorophyll-a (hereafter chl-a) ($4.32-8.24\;{\mu}g\;l^{-1}$) compared to other ports. Spatio-temporal variation of chl-a concentration was not significantly correlated with abundances of N. scintillans (p>0.01). However, relatively high chl-a concentrations were consistently recorded along with high abundances of N. scintillans throughout all stations at Gwangyang compared to other ports. Abundances of N. scintillans observed at the three surveyed ports did not significantly (p>0.01) affect the concentration of dissolved oxygen in the surface mixed layer, indicating that the species abundances were not enough to cause reduction of dissolved oxygen during the study period. Presented results indicated that the Gwangyang seaport may provide the most suitable environment for a wide range of N. scintillans blooming compared to other ports.