• Title/Summary/Keyword: 해안선 모형

Search Result 72, Processing Time 0.034 seconds

무인항공기를 이용한 해안선변화조사 사례 소개

  • An, Do-Gyeong;Kim, Tae-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.144-146
    • /
    • 2019
  • 과거의 해안선조사방법으로는 GNSS가 도입되면서 크게 발전하여 위성측위기를 이용한 현장조사방법과 항공기를 이용한 사진측량 방법이 조사의 주를 이루었다. 그러나, 현재 무인항공기(UAV)를 이용한 저고도 정밀조사 방법이 도입되어 무인항공기를 이용한 정밀사진측량이 가능하게 되었다. 무인항공기 정밀사진측량은 기존 조사방법과 비교시 저비용, 고정밀 성과를 취득 할 수 있다. 무인항공기 정밀사진측량은 해안선변화조사에 적용되어 무인항공기 정밀사진측량에서 취득된 고정밀 정사영상 및 수치표면모형(DSM)자료를 이용해 해안선을 추출하고 해안선변화 지역을 분석하는 자료로 활용되고 있다. 2016년도부터 우리나라 해안선변화조사 사업에 무인항공기를 이용한 조사가 실시되고 있으며 추후 여러 다방면으로 무인항공기를 이용한 다양한 조사가 이루어 질것으로 기대 된다.

  • PDF

A Practical Algorithm to Simulate Erosion of On-Shore Zone (실용적 해안선 후퇴 반영 알고리즘)

  • Kim, Hyoseob;Lee, Jungsu;Jin, Jae-Youll;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • An algorithm to allow shoreline movement during numerical experiment on sediment transport, deposition or resuspension for general coastal morphology is proposed here. The bed slope near shoreline, i.e. mean sea level, is influenced by bed material, tidal current, waves, and wave-induced current, but has been reported to remain within a stable range. Its annual variation is not large, either. The algorithm is adjusting the bathymetry, if the largest bed slope within shoreline band exceeds a given bed slope due to continuous erosion at zones below the shoreline. This algorithm automatically describes retreat of shoreline caused by erosion, when used within a numerical system. The algorithm was tested to a situation which includes a continuous dredging at a point, and showed satisfactory development of concentric circle contours. Next, the algorithm was tested to another situation which includes sinking of eroded part of bed plate, and produced satisfactory results, too. Finally, the algorithm was tested to a movable-bed laboratory experimental conditions. The shoreline movement behind detached breakwater was reasonably reproduced with this algorithm.

안목항 방파제 건설로 인한 연안 토사 이동경향의 변화

  • 김인호;이정렬
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.490-495
    • /
    • 2004
  • 안목항의 방파제 확장 건설로 인하여 항남측에 심각한 침식현상이 광범위하게 발생하고 있는 데 이를 규명하기 위하여 현재 주변 해안선 변형 현상을 기초로 연안 표사 이동(littoral drift)도를 정성적으로 작성하였으며 수치 모형실험을 통하여 상세할 표사이동의 변화를 살펴보았다. 수치모형 실험은 파랑 변형 및 해빈류 예측 모형인 WADEM-P, DISEM-R로 수행되었다. 항 내 매몰 및 하천 폐색을 근본적으로 해결하면 해안선 침식문제를 완화 시 킬 수 있는 장치로서 모래운송장치(sand transfer)의 필요성이 언급되었으며 앞으로 연안 표사량이 많은 동해안에서의 항만 건설시 꼭 필요한 부대장치임을 강조한다. 또한 주기적인 연안관측 프로그램을 수립하여 연안 표사량 및 해안 침식율을 산정한 후 모래이송장치의 설치 여부 및 그 규모를 판단할 필요가 있다.

  • PDF

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20 (맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로)

  • Cho, Young Jin;Kim, In Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.101-114
    • /
    • 2019
  • In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Model Experiments for Acoustic Propagation Characteristics in the Across Slope Direction of the Sloping Sea Bed (경사해저의 해안선 방향 음파 전달 특성에 관한 모형 실험)

  • Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.52-60
    • /
    • 1991
  • Sound propagation in a sloping sea bed ocean environment demonstrates ray curvature in a direction parallel to the shoreline. The theoretical analysis of this shows that an ensonified region and a shadow region are formed, and their spatial extents depend on the spatial coordinates of source and receiver, a sloping angle and sourece frequency. The purpose of this experimental study using a sloping sea bed model is to check the theoretical prediction as a part of an ongoing investigation in the ocean environment. The sloping sea bed model used in this experiment had an ideal pressure-release boundaries and a sloping angle of $220.5{\circ}$ A single frequency signal and an impulsive signal were used as omnidirectional point sources. The spatial acoustic field characteristics in the across slope direction were measured using the former and the frequency dependent field characteristics in a specific point were obtained using the latter. It has been found that the analysis for the spatial extent of shadow zone and the frequency dependent field characteristics in the across slope direction, has a good agreement with the theoretical solution.

  • PDF

A Shoreline Change Model around Coastal Structures (해안구조물 주변에서 해안선변형 예측모형 실험)

  • 이종섭;박일현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 1990
  • A numerical model is developed to predict the shoreline change by the coastal structures constructed. In order to describe the wave deformation at the shadow zone of the structure, the present model employs the mild-slope equation in steady state and the wave ray method using the coefficients of wave refraction, diffraction and shoaling. In the model results of shoreline changes for the various structures. it showed a qualitative agreement with the findings observed in the field such as tombolo, and the response of this model was found to be very sensitive to the longshore distribution of wave heights. It was also applied to a field area. From the results of the application this model is proved to be useful around the complex coastal structures and bottom topography.

  • PDF

Shoreline Change Model in Haeundae Beach (해운대 해빈의 해안선변형 예측 모형)

  • 박일흠;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-62
    • /
    • 1989
  • Shoreline change of Haeundae beach was predicted by one-line model considering interaction of seawalls and longshore variation of wave height . Wave deformation was calculated by combined wave refraction-diffraction model . In this shoreline change model, empirical constants and offshore sediment transport rate are treated as calibration parameters, and the calculated results are in good agreement with the observed data.

  • PDF

Comparison of Orthogonal Curvilinear Grid and Regular Grid Using SWAN Model (SWAN 모형을 이용한 정방형 직교격자체계와 직교-곡선 격자체계의 비교 연구)

  • Kim, Hyo-Seob;Jang, Chang-Hwan;Kim, Sang-Taek;Kim, Hyung-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.2038-2042
    • /
    • 2010
  • 본 연구는 동해안 속초항에 정방형 직교격자체계(Regular Grid)와 직교-곡선 격자체계(Orthogonal Curvilinear Grid)를 이용하여 SWAN 모형에 적용시켜 각 격자체계에 따른 파랑변형의 특성을 비교하는데 목적이 있다. 본 연구결과 북방파제가 연장 중인 방파제 선단에서 회절현상이 관측 되었으며, 속초 해수욕장 인근에서의 해안선 형상에 따라 굴절 효과로 인하여 입사 파랑의 벡터들이 해안선에 수직하게 입사되는 현상이 관측 되었고, 특히, 조도 주변에서 파랑의 굴절 효과와 차단효과를 관찰할 수 있다. 정방형 직교 격자체계와 직교-곡선 격자체계의 계산결과는 유사하나 직교-곡선 격자체계가 해안선에서 보다 정밀한 계산 값을 얻을 수 있었다. 하지만 직교-곡선 격자체계는 계산시간이 최소 4배 이상 증가하는 단점을 가지고 있다.

  • PDF

A Study on the Shoreline Changes By the Geodetic Characteristics of the East Sea and on the Numerical Model for its Predicting (동해안의 측지학적 특성에 의한 해안선 변화와 그의 예측을 위한 수치모델에 관한 연구)

  • 양인태;최한규;김옥남;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.9-16
    • /
    • 1990
  • This is a geodetic study on the the shoreline changes occurred by the facilities constructed in the beach. There are emperical, hydrological and numerical methods in predicting of the shorline changes. Numerical method is the most suitable method in the field of geodesy. There are many predicting models. This study adopted one-line model because it has a few hydrological factor and simplify the natural phenomena. This study established the ideal seawall boundary condition, applied the explicit model and the implicit model in the Dongsan harbour in East Sea, and could predict the optimum seawall position for protection of shore. The results are following ; Seawall protect shore of which input angle of wave is below 20$^\circ$, a ratio of wave height bleak/line does not effect in shoreline changes. The implicit model is accuracy but can not predict longtime change. But the explicit model is the opposite of the implicit model.

  • PDF