• Title/Summary/Keyword: 해수펌프

Search Result 105, Processing Time 0.029 seconds

A Study on Efficient Capacity Control of a Marine Pump with the Variation of Sea Water Temperature (선박용 펌프의 해수온도 변화에 따른 효율적인 유량제어에 관한 연구)

  • Choi, Sang-Bom;Im, Myeong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.788-793
    • /
    • 2014
  • In this study, the electrical power consumption saving effect is studied through installing an inverter which is able to control the R.P.M. of marine sea water pump by effective flow control. The study looks at how sea water pump's flow control influences on the system without the Marine Growths Protection System(MGPS). Auxiliary sea water pump and refrigerator sea water pump in training ships, which are always operated not only in harbor but also in navigation, was used in the experiment and the experiment was conducted by dividing into harbor and navigation. As a result of research, in the case the sea water temperature is under $18^{\circ}C$, the operation was possible with a 58.3 % decrease in pump R.P.M. and electric power consumption was saved by 50 %. In spite of the sea water temperature increasing upto $34^{\circ}C$, pump R.P.M. at 91.6 % was sufficient to operate with a 20 % electric power consumption saving effect. In the pipelines without MGPS, lowering R.P.M. along with lowering pressure results in the attachment of various marine growths.

Optimum design and performance of marine sea water pump with impeller using CFRP (CFRP 임펠러를 사용한 선박용 해수펌프의 최적설계와 성능특성)

  • Jeong, Seon Yong;Rhi, Seok Ho;Seo, Hyoung Seock;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7878-7884
    • /
    • 2015
  • Marine sea water pump with impeller using carbon fiber block was developed to prevent the impeller corrosion by the salinity. A numerical analysis was carried out in order to optimize the impeller and volute design for marine sea water pump and to investigate the sensitivity of the related parameters(impeller thickness, surface roughness) using CFD commercial code. The impeller thickness is limited because of the weight. Since the impeller using the carbon fiber lights, the thickness which has a maximum efficiency can be used. The results show that the surface roughness leads to an 7% reduction in pump efficiency.

Performance Analysis of Freezing Desalination System using Seawater Heat Pump (해수 히트펌프를 이용한 냉동법 담수화시스템 개념설계)

  • Lee, Ho-Saeng;Lee, Seung-Won;Yoon, Jung-In;Kim, Hyeon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The freeze desalination cycle with seawater heat pump system is simulated and designed for the basic data for the design of freeze desalination system. The basic model of seawater heat pump system is refrigeration cycle and indirect freeze desalination method is used for seawater desalination. The cycle performance of seawater heat pump such as COP, compressor work, condensing capacity was analyzed and the desalination performance such as fresh water productivity and energy per unit fresh water productivity was compared with respect to the seawater temperature of condenser inlet and ice ratio in the evaporator. The compressor work and condensing capacity decreased with respect to the decrease of seawater inlet temperature. The energy per unit fresh water productivity in case of $8^{\circ}C$ seawater inlet temperature showed 28.9% lower than that of $20^{\circ}C$.

Cavitation Analysis on Ship Seawater Pump Using CFD (CFD를 이용한 선박용 해수펌프의 공동현상에 대한 분석)

  • Kim, Bu-Gi;Kim, Hong-Ryeol;Yang, Chang-Jo;Kim, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.400-406
    • /
    • 2017
  • The model used in this study was reversed to analyze the cause of excessive damage that occurred inside the rotating system and pipe system of a centrifugal-type seawater pump on a ship. For this purpose, internal flow analysis on a cooling seawater pump was performed using CFD. As a result, the shape and boundary conditions of the target pump were set by reverse engineering, and pump efficiency at a design operating point of $125m^3/h$ was calculated as 85.3 % with a head of 32.0 m. The maximum efficiency point of the target pump was estimated to be 86.2 % at $150m^3/h$, but this differed from the actual operating point. At $112.5m^3/h$, which was the lowest flow point, flow was unstable due to the characteristics of the low flow point and analysis convergence was not good. The purpose of this study was to clarify the cause of ongoing cavitation in seawater pumps and piping systems in operation. Future research will be needed to clarify causes for pipe systems in the future by performing calculations for the total piping system of an inlet and outlet, in addition to measuring the flow rate of each branch pipe.

Studies on the application of unit-inverter parallel operation to sea-water pump in power plant(II) (단위 인버터 병렬운전에 의한 발전소 해수펌프 적용(II))

  • 김수열;류홍우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.290-294
    • /
    • 1997
  • 서인천복합화력발전소의 해수펌프를 속도제어 하여 소내 소비 전력을 절감하고 전동기의 직입기동에 의한 스트레스를 줄이기 위하여 생산기술 개발 과제의 연구개발품 2MVA GTO 인버터를 실증 적용하였다. 적용 시스템은 단위 인버터 병렬운전으로 인버터의 입력측은 병렬다중 방식, 출력측은 직렬다중 방식으로 설계하였다. 인버터에 의한 운전 자료를 기준으로 소비전력을 산정하여 비교하였으며 그 적용 방법과 결과를 보인다[1][2].

  • PDF

Studies on the application of unit-inverter parallel operation to sea-water lift pump in power plant(I) (단위 인버터 병렬운전에 의한 발전소 해수펌프 적용(I))

  • 김수열;류홍우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.285-289
    • /
    • 1997
  • 발전설비의 대형화로 인하여 소내소비 전력량이 점점 증가하고 있는 추세이며 대용량의 화력발전소라 하더라도 기저부하보다는 부하조정의 역할이 강해져 정격속도로 운전하던 팬, 펌프등을 필요 부하에 따라 회전수를 제어하여 전력절감을 꾀하여야 할 필요가 있다[1]. 이에 따라 생산기술개발 과제로 개발한 대용량 GTO 인버터 시스템을 서 인천복합화력발전소의 3상 6600V 1500KW 용량인 전동기 구동 해수펌프에 적용하기 위한 기술적 검토 내용과 계산된 전력 절감량을 제시하였다. 적용 시스템으로는 개발된 3상 660V 1MVA 단위 인버터를 병렬 운전시켜 2MVA의 용량으로 하였으며 인버터의 입출력 단에 변압기를 설치하여 강압 및 승압 시켜 사용하였다.[2]

  • PDF

A Study on PCS for ML-Based Electrical Propulsion System (ML 기반의 전기추진시스템을 위한 PCS에 관한 연구)

  • Lee, Jong-Hak;Lee, Hun-Seok;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1025-1031
    • /
    • 2019
  • This study proposes a PCS that enables efficient operation of seawater pumps for ships by implementing ML-based algorithms. Seawater temperature, RPM and power consumption data are acquired from two ships with PCS, analyzed with regression analysis method, and new algorithms are presented. Using the algorithms presented, Ship A saved about 36% compared to the PCS application, and ML-based algorithms in certain sea temperatures of 19 to 27 degrees Celsius and above 32 degrees Celsius were about 1% lower than Ship A's PCS. Ship B saved about 50% compared to PCS not applied, and about 2% more than Ship B's PCS in waters above $19^{\circ}C$, a specified sea temperature. The derived data can be used to suggest the optimum pump speed and sea route. In addition, the trend of acquired data can be used to infer the performance of the pump or the timing of elimination of the MGPS when efficiency becomes poor.

Performance analysis simulation for domestic application of heat pump by using sea water heat source (해수열에너지를 이용한 히트펌프의 국내 적용을 위한 성능평가 시뮬레이션)

  • Lim, Seungtaek;Kim, Jungsik;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.814-820
    • /
    • 2014
  • Due to the development of human civilization, industrialization and urbanization, the human race demanded the food, clothing and shelter as well as a comfortable living environment. For the purpose of this, the refrigeration and air conditioning part was carried out research and development. However, high oil prices and environmental pollution having problems in the 21st century cannot be overlooked. As an alternative, thermal system was designed using the heat pump to applied sea water heat source. In this paper, outside and sea temperatures are analysed in 2010 and carried out the performance analysis simulation at All water and All Air heat pump system by HYSYS program for domestic use. As a result, total average COP of the system is 3.37 from All Water system and All Air is 3.48. It showed that high performance confirmed in both system.

Control Algorithm Development for Design of Cooling System in High-power Propulsion Motor (대용량 전기추진시스템 설계를 위한 제어알고리즘 개발)

  • Oh, Jin-Seok;Jung, Sung-Young;Kong, Yeong-Kyung;Bin, Jae-Goo;Kim, Han-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.195-201
    • /
    • 2010
  • In this paper, a cooling system of high-power propulsion motor with Energy Saving System(ESS) is described. Normally, the cooling system for ship consists of fresh water pump, sea water pump, 3-way valve and cooler. In the cooling system, F.W(Fresh Water) and S.W(Sea Water) pump is operated on rated rpm, and the 3-way valve is controlled for preventing over-cooling. So, the consumption power of pump's motor is changed according to a sea water temperature. In the proposed cooling system, F.W. pump and S.W pump is controlled by inverter, and it is can be reduced the consumption power. Also, it is proved with simulation.

Numerical Study for Development of Submerged Seawater Lift Pump (심정용 해수펌프 개발을 위한 수치해석 연구)

  • Kim, Young-Ju;Kim, Young-Hun;Woo, Nam-Sub;Kwon, Jae-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.21-26
    • /
    • 2011
  • Seawater lift pump systems are responsible for maintaining open canal levels to provide the suction flow of circulating water pumps at the set point. The objective of this paper is to design a 2-stage mixed flow pump (for seawater lifting), investigate the new impeller modeling method, and performance improvements of the impeller by using a commercial CFD code. The rotating speed of the impeller is 1,750 rpm with a flow rate of 2,700 m3/h. A finite volume method with a structured mesh and realized k-${\varepsilon}$ turbulent model is used to guarantee a more accurate prediction of turbulent flow in the pump impeller. The performance variables such as the static head, brake horsepower, and efficiency of the mixed flow pump are compared based on changes in the impeller blade shape.