• Title/Summary/Keyword: 해수유동모형

Search Result 67, Processing Time 0.023 seconds

Coastal Water Circulation Modeling with Water Exchange through Permeable Dike (투수성 호안제체을 통한 해수교환을 고려한 해수유동 모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.301-307
    • /
    • 2006
  • In coastal zones with high tidal ranges like Korean western coast, port construction and reclamation projects have been increased. Most of the projects include sea-dyke construction. In the sea-dykes constructed to protect sea water intrusion, sea water was exchanged through the permeable dykes. The water level inside the area enclosed by the dykes changes with time due to tidal action of outer sea, but the tidal range is smaller than that of outside because of strong friction. In numerical modeling of coastal circulation the water exchange through the dykes has been neglected, which has produced inaccurate estimation neglecting the water exchange. In this study a method, which can consider water exchange through sea-dyke, was suggested and the modeling accuracy was improved. A groundwater theory was utilized to explain the phenomena.

Prediction System of Hydrodynamic Circulation and Freshwater Dispersion in Mokpo Coastal Zone (목포해역의 해수유동 및 담수확산 예측시스템)

  • Jung, Tae-Sung;Kim, Tae-Sik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • In coastal region, eutrophication, Do deficit and red tide are frequently occurred by influx of fresh water. When the fresh water containing pollutants is discharged into the sea, the surrounding water is contaminated by dispersion of freshwater flowing into coastal waters. The prediction and analysis about the dispersion process of the discharged fresh water should be conducted. A modeling system using GUI was developed to simulate hydrodynamic flow and fresh water dispersion in coastal waters and to analyze the results efficiently. The modeling module of the system includes a tide model using a finite element method and a fresh water dispersion model using a particle-tracking method. This system was applied to predict the tidal currents and fresh water dispersion in Mokpo coastal zone. To verify accuracy of the hydrodynamic model, the simulation results were compared with observed sea level and time variations of tidal currents showing a good agreement. The fresh water dispersion was verified with observed salinity distribution. The dispersion model also was verified with analytic solutions with advection-diffusion problems in 1-dimensional and 2-dimensional simple domain. The system is operated on GUI environment, to ease the model handling such as inputting data and displaying results. Therefore, anyone can use the system conveniently and observe easily and accurately the simulation results by using graphic functions included in the system. This system can be used widely to decrease the environmental disaster induced by inflow of fresh water into coastal waters.

  • PDF

Characteristics of Tidal Flow Simulation of Real Tide in West-South Coastal Waters of Korea (실조석에 의한 한국 서남해 연안역에서 해수유동의 재현특성)

  • Jeong, Seung-Myong;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • In this study, a computed tide of a real tide was introduced to improve the numerical solutions for tides and tidal flow simulations. The real tide was defined considering the nodal modulation amplitude, phase correction factor, astronomical argument, and tidal harmonic constants of all the constituents. The numerical simulation was performed using the real tide parameters for the west-south coastal waters of Korea, where the observation data for tides, tidal currents, waves, and winds over two seasons exist. The tidal flow simulation of the real tide was simulated successfully. The correlation coefficient between the observed and calculated values was 1.0, which indicated both accurate amplitude and phase. The U- and V-components of the tidal current obtained for the real tide had average valid correlations of 0.83 and 0.936, respectively. The speed error for the residual current was 0.006 m/s on the average, which indicated an insignificant difference, and the directional behavior of the residual current was very similar. In addition, the velocity error was attributed to various weather effects, such as high waves and wind storms. Therefore, this model is expected to improve current solutions provided that weathering forces, such as waves and winds, are considered.

Impact of the coastal structures on the water circulation near Gusipo coast, Yellow Sea, Korea (서해 구시포 해안에서 해수유동에 미치는 구조물의 영향)

  • Kim, Cha-Kyum;Park, Il Heum
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.865-875
    • /
    • 2022
  • Field measurements and numerical simulations using EFDC model were performed to quantify the changes of water circulation near Gusipo coast located in the Yellow Sea of Korea to estimate the impact of the construction of the coastal structures (jetty, groin, Gusipo port and bridge). The model predicted tide and tidal currents agreed reasonably well with the measurements. The maximum currents during spring tide near the Gusipo Beach (GB) have the range of 20~40 cm/sec whereas those off the GB range from 60 to 80 cm/sec. The typical patterns of tidal current show parallel with the local isobath. Tidal currents flow northeastward during the flood tide whereas the currents during the ebb tide flow southwestward. The current speeds at shielded waters after the construction of coastal structures strongly decreased as compared with those before the construction. The tidal volume due to the construction of coastal structures was estimated using the depth averaged velocity for 24 hours of spring tide. Tidal volume after construction of coastal structures was compared with initial state (before construction). Tidal volume at present state (after construction of jetty, groin, Gusipo port and bridge) decreased by 28.4% as compared with that of the initial state. The volume after construction of jetty and groin decreased by 21.3%, and the volume after construction of Gusipo port and bridge decreased by 9.8%.

Numerical Simulations of Water Circulation and Pollutant Transport near a Coastal Area of Wolsung NPPs (월성원전 연안역 해수유동 및 오염물 이동 수치실험)

  • Park, Geon-Hyeong;Kim, Ki-Chul;Min, Byung-Il;Lee, Jung-Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.255-262
    • /
    • 2012
  • Numerical simulations were performed to evaluate the dispersion characteristics of the pollutant around a Wolsung coastal area at located nuclear power plants. Numerical experiments by using EFDC(Environmental Fluid Dynamics Code) showed good agreements by comparison with the time series and harmonic analysis of the tidal elevations. The released pollutants moved in north direction at flood tide and in south direction at ebb tide. The calculated salinity and temperatures showed good agreements with the observed results by NFRDI(National Fisheries Research & Development Institute). The water circulation due to the variations of the temperature, salinity and tidal components were analyzed to estimate the dispersion characteristics of the pollutant.

Prediction of Tidal Changes and Contaminant Transport Due to the Development of Incheon Coastal Zone (인천해역 개발에 따른 조석변화 및 오염물질 운송 예측)

  • Jeong, Shin-Taek;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A horizontal 2-D model which includes the wetting-drying treatment technique in the intertidal zone is established for the prediction of tidal changes and contaminant transport due to the development of Incheon coastal zone. The flow model is verified by the measurement data at Jeong-Do, and then the computed values are closely matched to the observed water elevations and velocities of main-flow direction. And then, the tidal change patterns are simulated using this model before and after the construction of the Youngjongdo New Airport and Shihwa Seadike. In the spring tide condition, pollutants transport pattern is also simulated for the arbitrary pollutants loads. By the analysis of this numerical simulation results, the velocities after development are decreased, and discharged pollutants are mainly transported by the advection along a narrow deep trough. Thus, this model can be used as the compatible prediction model for the tidal change and pollutant transport due to the development plan of Incheon coastal zone.

  • PDF

Estimation of Sea Water Transport by Water-depth Variation at Pier-bridge between Busan New-port and the Nakdong River Estuary (부산 신항-낙동강 하구역 연결잔교부의 물질수송 해석(II) - 잔교주변 해저수심변화에 따른 해수소통량 예측 -)

  • Lee, Young-Bok;Ryu, Seung-Woo;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • This study analyzed the characteristics of sea water transport between Busan New-port and the Nakdong River estuary. Numerical modeling was used to evaluate the characteristics of the tidal current. Numerical simulations of three different topographies were conducted. The results are summarized as follows: 1) The volume of sea water transport was reduced by $0.7{\sim}18.4%$ when water depth was decreased at Busan New-port (10 m); 2) The volume of sea water transport was increased by $3.5{\sim}21.9%$ when a channel (depth 5 m) was constructed in the direction of the Nakdong River estuary.

  • PDF

Preprocessing System for the Finite Element Tidal Simulation Model Using GIS and Automatic Mesh Generator (GIS 및 격자망 자동발생 프로그램을 이용한 해수유동 유한요소 모형의 전처리 시스템)

  • Kwun Soon-kuk;Koh Duck-koo
    • KCID journal
    • /
    • v.2 no.2
    • /
    • pp.10-19
    • /
    • 1995
  • In spite of their high availability in the field of water resources, finite element models generally require large amount of input data in which the preparation of them consists of complicated procedures and time consuming works. In addition, in case of a

  • PDF

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

Numerical Simulations for Dispersion of the Suspended Sediments Near Daesan Coastal Areas (대산항 해역의 부유사 확산 수치모사)

  • Kim, Jin-Hyuk;Park, Gun-Hyung;Kim, Ki-Chul;Suh, Kyung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • EFDC model was applied to reproduce velocity fields and to evaluate the dispersion characteristics of suspended sediments (SS) around a Daesan port. Numerical results using two-dimensional hydrodynamic model of EFDC showed good agreements through comparison with the time series and harmonic analysis of the tidal elevations. The dispersion patterns of the suspended sediments using the calculated velocity fields were calculated to move from east to northeast direction in flood tide and from west to southwest in ebb tide for dredging of sea route, respectively. Also, the suspended sediments were widely dispersed into the front areas of a Daesan port, Nanji-do and Garorim bay in the long-term. Therefore, it was inferred that the environmental problems for sea pollution would be occurred seriously if the dredging for sea route would be continued in the long-term.