• Title/Summary/Keyword: 해법공간

Search Result 122, Processing Time 0.021 seconds

An Algorithm For Approximating The Performance of Multi-mode Network System Using Algebraic Property of System States (시스템 상태의 대수적 성질을 이용한 다중모드 네트워크 시스템 성능 근사계산 알고리즘)

  • Oh, Dae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.127-137
    • /
    • 2009
  • A practical algorithm of generating most probable states in decreasing order of probability of the network system state is suggested for approximating the performance of multi-mode network system using algebraic structure of the system states. Most complex system having network structure with multi-mode unit state is difficult to evaluate the performance or reliability due to exponentially increasing size of state space. Hence not an exact computing method but an approximated one is reasonable approach to solve the problem. To achieve the goal we should enumerate the network system states in order as a pre-processing step. In this paper, we suggest an improved algorithm of generating most probable multi-mode states to get the ordered system states efficiently. The method is compared with the previous algorithms in respective to memory requirement and empirical computing time. From the experiment proposed method has some advantages with regard to the criterion of algorithm performance. We investigate the advantages and disadvantage by illustrating experiment examples.

Determination of the Optimal Height using the Simplex Algorithm in Network-RTK Surveying (Network-RTK측량에서 심플렉스해법을 이용한 최적표고 결정)

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • GNSS/Geoid positioning technology allows orthometric height determination using both the geoidal height calculated from geoid model and the ellipsoidal height achieved by GNSS survey. In this study, Network-RTK surveying was performed through the Benchmarks in the study area to analyze the possibility of height positioning of the Network-RTK. And the orthometric heights were calculated by applying the Korean national geoid model KNGeoid13 according to the condition of with site calibration and without site calibration and the results were compared. Simplex algorithm was adopted for liner programming in this study and the heights of all Benchmarks were calculated in both case of applying site calibration and does not applying site calibration. The results were compared to Benchmark official height of the National Geographic Information Institute. The results showed that the average value of the height difference was 0.060m, and the standard deviation was 0.072m in Network-RTK without site calibration and the average value of the height difference was 0.040m, and the standard deviation was 0.047m in Network-RTK with the application of the site calibration. With linearization method to obtain the optimal solution for observations it showed that the height determination within 0.033m was available in GNSS Network-RTK positioning.

Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks (물리정보신경망을 이용한 파동방정식 모델링 전략 분석)

  • Sangin Cho;Woochang Choi;Jun Ji;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.114-125
    • /
    • 2023
  • The physics-informed neural network (PINN) has been proposed to overcome the limitations of various numerical methods used to solve partial differential equations (PDEs) and the drawbacks of purely data-driven machine learning. The PINN directly applies PDEs to the construction of the loss function, introducing physical constraints to machine learning training. This technique can also be applied to wave equation modeling. However, to solve the wave equation using the PINN, second-order differentiations with respect to input data must be performed during neural network training, and the resulting wavefields contain complex dynamical phenomena, requiring careful strategies. This tutorial elucidates the fundamental concepts of the PINN and discusses considerations for wave equation modeling using the PINN approach. These considerations include spatial coordinate normalization, the selection of activation functions, and strategies for incorporating physics loss. Our experimental results demonstrated that normalizing the spatial coordinates of the training data leads to a more accurate reflection of initial conditions in neural network training for wave equation modeling. Furthermore, the characteristics of various functions were compared to select an appropriate activation function for wavefield prediction using neural networks. These comparisons focused on their differentiation with respect to input data and their convergence properties. Finally, the results of two scenarios for incorporating physics loss into the loss function during neural network training were compared. Through numerical experiments, a curriculum-based learning strategy, applying physics loss after the initial training steps, was more effective than utilizing physics loss from the early training steps. In addition, the effectiveness of the PINN technique was confirmed by comparing these results with those of training without any use of physics loss.

A Study of Fatigue Damage Factor Evaluation for Railway Turnout Crossing using Qualitative Analysis & Field Test (현장측정 및 정성분석기법을 이용한 분기기 망간 크로싱의 피로손상도 평가에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Eum, Ki-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.881-893
    • /
    • 2008
  • The major objective of this study is to investigate the fatigue damage factor evaluation of immovability crossing for railway turnout by the field test and qualitative analysis. From the field test results of the servicing turnout crossing and qualitative analysis with frictional wear which section stiffness decreased, it was evaluated fatigue life of servicing turnout crossing. Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in turnout crossing using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis and evaluation, which is easily applicable in engineering practices of designers. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space solution. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience.

Analysis of the Carbon Neutrality Effects of the Joseon Royal Tombs Historical Landscape Forests Based on i-Tree Eco (선릉과 정릉 역사경관림의 i-Tree Eco 기반 탄소중립 효과 분석)

  • Lee, Jae-Young;Han, Jung-Hoon;Son, Young-Hye;Kim, Tae-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • As climate change issues intensify, the importance of green spaces, a Nature-based Solution (NbS), is being emphasized for urban climate change adaptation. This study analyzes the carbon neutrality effects of the historical landscape forests of Seolleung and Jeongneung, large green spaces in urban areas, using the i-Tree Eco simulation. By doing so, the study underscores the significance of maintenance and management from a climate change adaptation perspective. For the simulation analysis, an inventory was established based on field-measured tree monitoring data of 10,643 trees within the study area, linked with climate data from nearby weather observation stations. The analysis results showed that the trees within the study area annually reduced air pollutants by 5,400 kg, stored 1,260 tons of carbon, and sequestered 98.23 tons of carbon. Additionally, since the study area primarily consists of forest species, it was found that it can secure relatively higher biomass accumulation compared to trees applied to street trees and park green spaces. This emphasizes the need for maintenance and management of historical landscape forests as urban resources that can contribute to national carbon neutrality due to their high forest structure integrity, in addition to their heritage preservation value.

A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems (분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법)

  • Kim Eun-Mi;Park Seong-Mi;Kim Kwang-Hee;Lee Bae-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1021-1028
    • /
    • 2005
  • The general solution for classification and regression problems can be found by matching and modifying matrices with the information in real world and then these matrices are teaming in neural networks. This paper treats primary space as a real world, and dual space that Primary space matches matrices using kernel. In practical study, there are two kinds of problems, complete system which can get an answer using inverse matrix and ill-posed system or singular system which cannot get an answer directly from inverse of the given matrix. Further more the problems are often given by the latter condition; therefore, it is necessary to find regularization parameter to change ill-posed or singular problems into complete system. This paper compares each performance under both classification and regression problems among GCV, L-Curve, which are well known for getting regularization parameter, and kernel methods. Both GCV and L-Curve have excellent performance to get regularization parameters, and the performances are similar although they show little bit different results from the different condition of problems. However, these methods are two-step solution because both have to calculate the regularization parameters to solve given problems, and then those problems can be applied to other solving methods. Compared with UV and L-Curve, kernel methods are one-step solution which is simultaneously teaming a regularization parameter within the teaming process of pattern weights. This paper also suggests dynamic momentum which is leaning under the limited proportional condition between learning epoch and the performance of given problems to increase performance and precision for regularization. Finally, this paper shows the results that suggested solution can get better or equivalent results compared with GCV and L-Curve through the experiments using Iris data which are used to consider standard data in classification, Gaussian data which are typical data for singular system, and Shaw data which is an one-dimension image restoration problems.

Landscape Design for Daechon Soul Island Resort Complex (대천 소울 아일랜드 리조트 조경설계)

  • Kwon, Jin-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.74-83
    • /
    • 2010
  • This study is a development plan of a resort in a regional center that aims to generate tourism consumptions that have ripple effects on the regional economy by developing abandoned mine complexes in Daechon. Thanks to economic growth, the public awareness of tourism has changed. Hence, want for tourism influences development and advancement of recreational spaces, combining with various cultural contents. Development associated with environmental issues caused by modernization has become a major issue. At this point, to rediscover and specialize industrial complexes of bygone days as tourism resources signifies regeneration of regional resources. This study aims to find a solution for appropriate tourism development as part of the measures to revitalize the regional economy in underdeveloped areas and to improve the polluted environment. The result of the study is summarized as follows: First, in regional development alongside the development of a resort complex, it is important to construct environmental similarities. Minimizing differences in landscape structures is especially necessary because it will cause tourism resources in a regional center to be naturally linked to regional activities. These will then be recognized as attractions in the neighborhood. Therefore, it is desirable to reflect a spatial structure for environmental convergence, and, at the same time, to fulfill operation purposes by space through differentiation of movement lines. Second, in utilization of existing environmental resources, it is desirable to express localities and to develop differentiated elements. Facilities should not be homogenized, attaching importance to trends. Therefore, in establishing a development plan, it is important to have an attitude to accept existing roles and functions in a transformative manner. Third, recreational facilities in resort spaces generally have the problems of being uniformly planned as part of a development project and being limited to landscape facilities. Introduction of specialized facilities that can be reconciled with the regional environment and that can be open influences the landscape structure of the entire region and brings ripple effects as key facilities for activation of tourism.

A Critical Reconsideration on the Function and Meaning of Follies in Gwangju - Focused on the First Gwangju Follies - (광주 폴리의 기능과 의미에 대한 비판적 재고 - 제 1차 광주폴리를 중심으로 -)

  • Han, Sung-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.41-51
    • /
    • 2015
  • The purpose of the Follies that were constructed for the Gwangju-Biennale were for urban regeneration, to activate the empty old-town areas, and to strengthen the tradition and sense of place of the city. However, the ten Follies constructed around the wall of the old castle reveal many problems including that of leaving Follies alone instead of actively using them, damage to shop-keepers nearby, and pedestrian inconvenience, which is different from the original purposes. This study is meant to help understand the source of the negative phenomena, and to offer plans that will be conductive to the role of urban regeneration through activating the Follies and the spaces around them. As results of the investigation, there was no context giving uniformity among the various Follies. Also, the study showed that the insufficience of designers' understanding of the circumference near the Follies and lack of a consensus between the citizens and designers in the process of making the Follies. The crucial solution for solving these problems, and bringing to life the original purpose of creating the Follies was derived as applying "human activity" to the Follies. This study suggested 'street performance' as an effective device for application to human activity. While a Folly has no fixed function, the development of space program categories based on the applied characteristics of each Folly, and the simulation thereof showed effective potential for attracting people and activating those stagnated spaces. Recently, Gwangju city depicted the second Follies in applications such as reading roon, toilet, and movable food cart, which have clear purpose and different characteristics from the first ones. However, the first Follies will not be moved or demolished. As they are located around the National Asia Culture Center, some of them are supposed to be used to view the center. Consequently, a counterplan for the continuous and efficient use of those Follies is needed. Gwangju has a plan for the installation of 100 Follies throughout the city and it is expected that this study will be a meaningful guide line for improved Follies in the future.

Handling Method for Flux and Source Terms using Unsplit Scheme (Unsplit 기법을 적용한 흐름율과 생성항의 처리기법)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1079-1089
    • /
    • 2009
  • The objective of this study is to develop the accurate, robust and high resolution two-dimensional numerical model that solves the computationally difficult hydraulic problems, including the wave front propagation over dry bed and abrupt change in bathymetry. The developed model in this study solves the conservative form of the two-dimensional shallow water equations using an unsplit finite volume scheme and HLLC approximate Riemann solvers to compute the interface fluxes. Bed-slope term is discretized by the divergence theorem in the framework of FVM for application of unsplit scheme. Accurate and stable SGM, in conjunction with the MUSCL which is second-order-accurate both in space and time, is adopted to balance with fluxes and source terms. The exact C-property is shown to be satisfied for balancing the fluxes and the source terms. Since the spurious oscillations in second-order schemes are inherent, an efficient slope limiting technique is used to supply TVD property. The accuracy, conservation property and application of developed model are verified by comparing numerical solution with analytical solution and experimental data through the simulations of one-dimensional dam break flow without bed slope, steady transcritical flow over a hump and two-dimensional dam break flow with a constriction.

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF