• Title/Summary/Keyword: 항복 단면

Search Result 175, Processing Time 0.019 seconds

압축력을 받는 철골 부재에 있어서 좌굴대책

  • 김철환
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.13-16
    • /
    • 1993
  • 본 고에서는 철골 구조물에 있어서 일어나고 있는 좌굴에 대해, 현재 외국에서 진행중인 연구의 일부를 소개하였다. 이들의 기본 개념은 좌굴이 일어날 수 있는 압축부재에 있어서 최대내력, 즉 좌굴이 일어나기 이전에 부재를 압축에 대해 항복시킴으로써, 좌굴을 방지하려는 연구의 일종으로서, 부재의 강도면에 있어서는 큰 손실이 뒤따르게 된다. 하지만, 트러스 등의 구조물에 있어서 압축보다 인장에 대해서 사전에 항복하도록 설계(선인장 항복설계)가 이루어진 경우일지라도, 인장항복만으로 붕괴기구가 형성된다. 또한, 일반적으로 트러스를 제작함에 있어서 시공상의 오차가 발생할 가능성이 상존하고 있으며, 부정확하게 시공된 구조물에 있어서는 설계시 상정된 파괴기구와는 다른 형태의 파괴기구가 형성될 가능성이 있다. 따라서, 안정항복하여 큰 소성변형이 필요한 경우에는 상기의 방법이 유효하다고 사료된다. 한편 본 고에서 예로 다루고 있는 2중 강관구조에 있어서는, 외관과 내관의 단면적비가 약 1:1.5 정도이며, 보강재로 사용되는 내관을 아무리 저급의 제품을 사용한다해도 불경제적이 될 가능성이 크다. 따라서 금후, 내관의 단면 결정을 위한 많은 연구가 이루어져야 한다고 생각한다.

  • PDF

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

A Study on the Development of Force Limiting Devices of Cross-Section Cutting Types (단면절삭형 응력제한 장치의 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2015
  • This paper describes the development of force limiting device(FLD). The FLD could induce compressive yield before occurring elastic buckling for slender member under compressive load. Therefore, it might prevent reduction of load carrying capacity by elastic buckling and the structures with the devices would behave stable. A new type of FLD reduced cross area is proposed in this study different to existing studies like as out of plane type, slit type and folded plate type. The parameters of specimens are depth, width and number of cutting. The structural capacity and characteristics of proposed types were verified by experiment and FEM analysis. The FLD of cutting type is efficient in compressive member.

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

A Study on the ALFD Design of Rolled Beams (압연형교의 ALFD설계에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.91-97
    • /
    • 2003
  • The maximum moment may occur at interior supports of continuous bridges. If the bigger moment is applied on them, a local yielding at interior supports may occur. They may show plastic behaviors, and the moment will be redistributed. The strength design, L.F.D., redistributes 10% of the negative moment which is obtained from the elastic analysis. However, A.L.F.D method computes the moment which is redistributed. This moment is called automoment. The moment-rotation curve is needed to find automoment. In this paper moment-rotation curve for compact sections suggested from AASHTO Guide Specifications is used to find automoment. Based on A.L.F.D. limit states specification method, a three-span continuous bridge is designed.

Proposed Limit State Design Method for Encased Composite Columns (매립형 합성기둥의 한계상태설계법 제안)

  • Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.523-533
    • /
    • 1997
  • Current limit state design method for encased composite columns contains irrational and uncertain design equations in defining section and material properties of composite members. Through investigating previous research used in formulating the design equation, this paper explores the irrationality and uncertainty such as 1) transformation of yield stress and elastic modulus for composite section, 2) an equation influencing buckling strength in terms of area rather than moment of inertia, and 3) selection of larger radius of gyration between steel and concrete sections. Improving the design equations this paper proposes two design methods which can be directly used in practical design.

  • PDF

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF

Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section (세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.219-229
    • /
    • 2015
  • An experimental study was performed for thin-walled rectangular concrete-filled tubular (CFT) columns. The present study mainly focused on evaluation of the axial load-carrying capacity of concrete-filled tubular columns using high-strength steel and slender section. The test parameters were width-to-thickness ratio, concrete strength, steel yield strength, and the use of stiffeners. Five specimens were tested under monotonic axial loading. Although elastic local buckling occurred in the slender-section specimens with high-strength steel, the specimens exhibited considerable post-buckling reserve. The test results also satisfied the predictions of a current design code. The specimens strengthened with vertical stiffeners exhibited improved strength and ductility when compared with the un-stiffened specimens.

The Specified Minimum Yield Stress of SM570TMC in Composite Columns (SM570TMC강의 매입형 합성기둥 적용시 설계기준 항복강도에 관한 연구)

  • Lee, Myung Jae;Oh, Young Suk;Lee, Eun Teak
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.195-203
    • /
    • 2008
  • This paper aims to evaluate the yield stress of SM570TMC concrete-filed H-shape steel columns subjected to axial force. These columns were evaluated and compared using quasi-static tests. The displacements and the axial loads column specimens were measured during the tests, and test results showed that the yield stress of concrete-filed H-shape steel columns subjected to axial load could be predicted using the previously proposed yield stress of steel columns.