• Title/Summary/Keyword: 항복온도

Search Result 167, Processing Time 0.023 seconds

Physicochemical Properties of a Biopolymer Flocculant Produced from Bacillus subtilis PUL-A (Bacillus subtilis PUL-A로부터 생산된 Biopolymer 응집제의 물리화학적 특성)

  • Ryu, Mi-Jin;Jang, Eun-Kyung;Lee, Sam-Pin
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • Soybean milk cake (SMC) was used for the solid-state fermentation by Bacillus subtilis PUL-A isolated from soybean milk cake. In the presence of 5% glutamate the maximum production of biopolymer (59.9 g/kg) was performed by fermentation at $42^{\circ}C$ for 24 hr. The recovered biopolymer was consisted of 87% $\gamma$-polyglutamic acid with molecular weight of $1.3{\times}10^6$ dalton and other biopolymer. The biopolymer solution showed the great decrease in consistency below pH 6.0, regardless of the molecular weight of PGA. Biopolymer solution has a typical pseudoplastic flow behavior and yield stress. The consistency of biopolymer solution was greatly decreased by increasing heating time and temperature in acidic condition compared to the alkaline condition. In kaolin clay suspension, the flocculating activity of biopolymer was the highest value with 15 mg/L biopolymer and 4.5 mM $CaCl_2$, but decreased greatly with $FeCl_3$. The flocculating activity of biopolymer was maximum at pH5, but decreased drastically by heating at $60{\sim}100^{\circ}C$. In particular, biopolymer with native PGA showed the efficient flocculating activity compared to that of modified biopolymer containing low molecular weight of PGA.

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.

Preparation of Flakes by Extrusion Cooking Using Barley Broken Kernels (보리 파쇄립을 이용한 압출성형에 의한 후레이크 제조)

  • Choi, Hee-Don;Seog, Ho-Moon;Choi, In-Wook;Park, Mi-Won;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-282
    • /
    • 2004
  • Barley flakes were developed by extrusion cooking using broken kernels, by-products of the barley pearling process. Broken kernels from both non-waxy and waxy barley broken kernels were sufficiently gelatinized at the barrel temperature of over $100^{\circ}C$ and the moisture content of broken kernels of over 35%. Cutting and flaking roll separating properties of pellets prepared from non-waxy barley broken kernels were better than those of waxy barley broken kernels. Characteristics of pellets prepared by extrusion cooking in different mixing ratios of non-waxy and waxy barley broken kernels were investigated. As the mixing ratio of waxy barley broken kernels increased, RVA peak viscosity, apparent viscosity, and yield stress of prepared pellets decreased, while flow behavior index increased. As the mixing ratio of waxy barley broken kernels increased, compressive strength and bulk density of deep-fat fried flakes drastically decreased, and the size of air cells on cross-section increased, and thickness of cell-constituting bodies decreased. Sensory evaluation results showed that acceptability for texture and taste of flakes inclosed as the mixing ratio of waxy barley broken kernels increased, and optimum mixing level of waxy barley broken kernels appeared to be 30-40%.

Production and High Temperature Mechanical Properties of Ti-TiC Composite by Reaction Milling (반응밀링법에 의한 Ti-TiC 복합재료의 제조 및 고온 기계적 특성)

  • Jin, Sang-Bok;Choe, Cheol-Jin;Lee, Sang-Yun;Lee, Jun-Hui;Kim, Sun-Guk
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.918-924
    • /
    • 1998
  • This study has been carried out to investigate the effect of reaction milling time on the synthesis of Ti- TiC p powder synthesised from the elemental titanium and activated carbon by reaction milling(RM), and the effect of vacu­u urn hot pressing temperature and TiC volume fraction on microstructural and mechanical properties of Ti- TiC com­p posite $\infty$ns이idated by vacuum hot pressing(VHP).T The elemental powders of titanium and activated carbon can be converted into Ti- TiC composite powders by reac­t tion milling for about 300hours, and were the average grain size of the as- milled powders has been measured to be a about $5\mu\textrm{m}$. The relative density of Ti- TiC VHPed above $1000^{\circ}C$ during Ihr is about 98% and the mechanical properties o of In- situ Ti- TiC composites are improved by TiC particle dispersed uniformly on titanium matrix. In order to investi­g gate thermal stability of Ti- TiC composite, after annealing at $600^{\circ}C$ for 80hrs micro- Vickers hardness have been per­f formed, and the values have been shown little changed as compared with those before annealing. The compact has b been tested on high temperature compressive test at $700^{\circ}C$ and has showed a high temperature compressive strength of 330MPa in a Ti- 20vol% TiC.

  • PDF

Electrical characteristics of Au and Pt diffused silicon $p^{+}-n$ Junction diode (Au와 Pt 확산에 의한 실리콘 $p^{+}-n$ 접합 스위칭다이오드의 전기적 특성)

  • Chung, Kee-Bock;Lee, Jae-Gon;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.101-108
    • /
    • 1996
  • The silicon $p^{+}-n$ junction diodes were fabricated. The fabricated wafers were treated by single or double annealing steps. Single annealing process was performed by diffusion of either Au or Pt into the wafer under the oxygen or nitrogen ambient at $800{\sim}1010^{\circ}C$. Second annealing step involved additional annealing of the single annealed wafer under the oxygen ambient at $800{\sim}1010^{\circ}C$ for one hour. Electrical characteristics of the diodes were investigated to evaluate the effect of the annealing treatments. In the case of single annealing under nitrogen ambient at $1010^{\circ}C$ for one hour, the amount of leakage current of Pt diffused diode was 75 times larger than that of Au diffused one. The optimum processing condition to achieve high speed silicon $p^{+}-n$ junction diodes from this study was obtained when Pt diffused wafer(treated under the nitrogen ambient at $1010^{\circ}C$ for one hour) was secondly annealed in an oxygen ambient at $800^{\circ}C$ for one hour. The resulting leakage current of two step annealed diodes were remarkably reduced to 1/1100 of the single annealed one. The diode characteristics such as recovery time, breakdown voltage, leakage current, and forward voltage were 4ns, 138V, 1.72nA, and 1V, respectively.

  • PDF

Study of Physical and Mechanical Properties of Zr-14Cu-7.5Ni-2.6Al Alloy Wide Ribbon (Zr-14Cu-7.5Ni-2.6Al 합금 광폭 리본의 물리적, 기계적 특성 연구)

  • Dongjin Oh;Yongsoo Kim;Sung Joon Pak;Heongkyu Ju
    • Journal of Korea Foundry Society
    • /
    • v.44 no.4
    • /
    • pp.97-102
    • /
    • 2024
  • In this study, the properties of Zr-14Cu-7.5Ni-2.6Al wide ribbon with amorphous structure and properties were analyzed using Hall effect, SEM-EDX, and XRD. Made by melt spinning method, this Zr-14Cu-7.5Ni-2.6Al based alloy ribbon is not more than 96 ㎛ thick and 100 mm wide. This amorphous alloy exhibited tensile strength of 1,641 MPa, yield strength of 1,541 MPa, elongation of 1% and elastic modulus of 98GPa. The bulk concentration, resistivity, and mobility values are midway between general heavy doping ceramics and metals, and they are about 100 times weaker than ordinary metals, so they are close to Si and have good electrical conductivity. In addition, folding tests were conducted at extreme temperatures, withstanding 150,000 times at -20℃, 300,000 times at 24℃, and 150,000 times at 60℃, with no folding defects observed. These results demonstrate the excellent durability and reliability of the Zr-14Cu-7.5Ni-2.6Al wide ribbon alloy and suggest the possibility of developing electronic products using this alloy.

A comparative study of electroplating and electroless plating for diameter increase of orthodontic wire (교정용 선재의 직경 증가를 위한 전기도금법과 무전해도금법의 비교연구)

  • Kim, Jae-Nam;Cho, Jin-Hyoung;Sung, Young-Eun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.145-152
    • /
    • 2006
  • The purpose of this study was to evaluate electroless plating as a method of increasing the diameter of an orthodontic wire in comparison with eletroplating. After pretreatment plating of the 0.016 inch stainless steel orthodontic wire, electroless plating was performed at $90^{\circ}C$ until the diameter of the wire was increased to 0.018 inch. During the process of electroless plating, the diameter of the wire was measured every 5 minutes to examine the increasing ratio of the wire's diameter per time unit. And to examine the uniformity, the diameter at 3 points on the electroless-plated orthodontic wire was measured. An X-ray diffraction test for analyzing the nature of the plated metal and a 3-point bending test for analyzing the physical property were performed. The electroless-plated wire group showed a increased tendency for stiffness, yield strength, and ultimate strength than the electroplated wire group. And there was a statistically significant difference between the two groups for stiffness and ultimate strength. In the electroless-plated wire group, the increasing ratio of the diameter was $0.00461{\pm}0.00003mm/5min$ (0.00092 mm/min). In the electroplated wire group, it was $0.00821{\pm}0.00015mm/min$. The results of the uniformity test showed a tendency for uniformity in both the plating methods. The results of this study suggest that electroless plating of the wire is closer to the ready-made wire than electroplating wire in terms of the physical property. However, the length of plating time needs further consideration for the clinical application of electroless plating.