• Title/Summary/Keyword: 항법 오차

Search Result 379, Processing Time 0.033 seconds

Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator (GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • In this paper, we developed the signal generator of GNSS navigation signals and analysis the performance of DCO(Digitally Clock Oscillator) compensation algorithm for cumulative distance error thorough simulation. In general, To generate a GNSS signal calculates the Doppler and Initial Pseudorange by using the location information of the receiver and the satellite. The GNSS signal generator generates a signal by determine the carrier and code output frequency using the Doppler information which is calculated as a function of time. The output frequency of the carrier and code would be used the DCO scheme. At this time, It extract the bit and code information on a for each sample by accumulating the DCO. an error of Pseudorange is generated by the cumulative error of the DCO. If Pseudorange error occurs, so that the influence to and operation of the receiver. Therefore, in this paper, we implemented the accumulated error compensation algorithm of the DCO to remove the accumulated error components DCO thereof, Pseudorange accumulated error is removed through the experiment, it was confirmed to be a high accuracy can be operated.

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.

Loran H-field 안테나 방향에 따른 특성 및 성능 향상 기법 연구

  • Park, Seul-Gi;Son, Pyo-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.203-205
    • /
    • 2019
  • 위성항법시스템의 안정적인 정보 제공의 요구사항은 점차 증가하고 있지만, 의도적인 전파교란 및 자연환경에 의하여 성능이 저하된다. eLoran 시스템은 위성항법시스템의 단점을 보완하기위한 대표적인 지상파항법시스템으로 고출력 신호로 의도적인 전파교란에 강인한 장점이 있다. eLoran 시스템에서 사용자는 E-field 또는 H-field 2가지 종류의 수신 안테나를 사용 환경에 따라 적합한 것을 사용한다. 접지가 필요없고 상대적으로 주변 전자장비의 잡음에 강인한 H-field안테나는 두 개의 루프로 구성되어 루프간의 위상과 이득차이로 일정한 원형의 지향성을 가지지 못한다. 그러므로 수신한 신호의 방향에 따라 측정치의 변화가 발생하므로 H-field 안테나를 사용시에는 수신하는 신호의 방향에 따른 오차를 제거해야한다. 본 논문에서는 H-field 안테나와 송신국간의 기하학적 방향오차에 따른 오차를 제거하기 위한 후처리 필터를 제안하였다. eLoran 모의 신호생성기를 활용하여 오차를 분석하고 모델링하여 제거하는 기법을 개발하였다. 제안한 기법을 검증하기 위하여 시뮬레이션과 차량실험을 통하여 오차를 확인하고 제거하여 성능향상을 확인하였다.

  • PDF

스트랩다운 관성항법시스템 성능평가 시험

  • Lee, Sang-Jong;Yoo, Chang-Sun;Sim, Yo-Han;Kim, Jong-Chul
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.28-41
    • /
    • 2002
  • The purpose of this paper is to show and define the performance, the system mechanization and the algorithm of the Strapdown Inertial Navigation System(SDINS). First, navigation equations are derived in the Earth Fixed mechanization and this mechanization apply to the two kinds of inertial measurement units which consist of same fiber optic gyros and different accelerometers(SDINS-1 and SDINS-2). Those two accelerometers have the different bias. To evaluate its performance, two kinds of tests have been performed - static motionless test, and rectangle-route moving test. The results of the moving test are compared with the results of Differential GPS which has an accuracy with ±2.0mm. and are presented in this paper.

  • PDF

Development of B-Value Based GBAS Ground Facility Error Standard Deviation Model and Verification (B-Value를 이용한 GBAS 지상국 오차 표준편차 모델 개발 및 성능 평가)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Lee, Young-Jae;Choi, Young-Kiu;Sung, Sang-Kyung;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1232-1237
    • /
    • 2009
  • The ICAO and FAA are developing and verifying of GBAS for civil aircraft landing and take-off. The guarantee of aircraft integrity issue is the important part of GBAS. To guarantee integrity, the GBAS ground facility broadcasts various informations to aircraft. The informations are related to the estimated accuracy of each pseudorange correction and the estimated error terms, for example B-value and standard deviation of the ground facility error. These parameters are used to calculate position error (estimated value of the user). If estimated position errors don't satisfy requirements, aircraft use alternate navigation means. In this paper, GBAS reference stations's real data, which operated by KARI (Korea Aerospace Research Institute) in Jeju international airport, are used to development of new ground facility error standard deviation model. We verify improvement of GBAS availability, with respected to vertical protection level, using B-value based a new ground facility error standard deviation model and a sigma inflation factor.

Trends of GNSS Augmentation System and Its Technologies (위성항법 보강시스템 및 기술동향)

  • Lee, S.U.;Hyoung, C.H.;You, M.H.;Sin, C.S.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.3
    • /
    • pp.20-31
    • /
    • 2016
  • 위성항법 보강시스템은 항법위성인 GPS 제공 항법신호를 수신 처리하여 각종 오차 성분을 제거시킴으로써 산출된 위치정확도, 시스템 가용도 및 제공신호에 대한 무결성 등이 향상됨에 따라 항공분야, 해양분야 및 차량내비 등 육상분야에서 요구하는 위치정확도뿐만 아니라 보강 및 무결정정보 등을 특정 성능 요구를 만족시킬 수 있도록 제공하는 시스템이다. GPS 신호에 대한 오차를 보강한 메시지를 활용하는 매체를 무엇을 활용하는지에 따라 구분할 수 있는데 위성을 이용하면 위성기반 보강시스템(Satellite Based Augmentation System: SBAS), 지상망을 이용하면 지상기반 보강시스템(Ground Based Augmentation System: GBAS), 비행기를 이용하면 항공기반보강시스템(Aircraft-Based Augmentation System: ABAS)으로 일컫는다. 본고에서는 위성항법 보강시스템의 현황과 그 관련 기술에 대하여 기술하고 한다.

  • PDF

위성항법시스템 및 보강시스템의 구축 현황

  • Nam, Gi-Uk;Heo, Mun-Beom;Sim, Ju-Yeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • 현재 운용중인 전 세계적인 위성항법시스템(GNSS : Global Navigation Satellite System)은 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System)가 있다. 전 세계적으로 주로 사용되는 시스템은 GPS이며, GLONASS는 러시아의 경제사정 악화로 인하여 지속적인 위성발사가 이루어지지 못하고 있다. 추가적으로 추진되고 있는 위성항법시스템은 유럽의 갈릴레오(Galileo), 중국의 북두(Beidou), 일본의 JRANS(Japanese Regional Advanced Navigation System) 그리고 2006년 5월에 구축 프로젝트가 승인된 인도의 IRNSS(Indian Regional Navigation Satellite System)가 있다. 보강시스템의 경우, 미국 FAA(Federal Aviation Administration)는 광역오차보정시스템(WAAS)을 Raytheon사와 개발하였으며, 현재 착륙용 근거리오차보정시스템(LAAS)을 Raytheon사 및 Honeywell사와 함께 정부/산업체 공동개발 사업(GIP; Government Industry Partnership)으로 진행 중에 있다. 유럽은 EGNOS(European Geostationary Navigation Overlay Service)를 사용하고 있으며, 일본의 MSAT(MTSAT Satellite Based Augmentation System)와 인도의 GAGAN(GPS and GEO Augmented Navigation)은 추진 중이다. 이 글에서는 위성항법시스템과 위성항법 보강시스템의 현황을 살펴본다.

  • PDF

A Precise Projectile Trajectory Registration Algorithm Based on Weighted PDOP (PDOP 가중치 기반 정밀 탄궤적 정합 알고리즘)

  • Shin, Seok-Hyun;Kim, Jong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.502-511
    • /
    • 2016
  • Recently, many kind of smart projectiles are being developed. In case of smart projectile, studying in advance, it uses a navigation data acquired from the GNSS receiver to check its location on the geocentric(WGS84) coordinates and to estimate P.O.I(point of impact). However, because of various error inducing factors, the result of positioning involve some errors. We introduce the advanced algorithm for the reconstruction of a navigation trajectory using weighted PDOP, based on a simulated trajectory acquired from PRODAS. It is very fast and robust to noise and shows reliable output. It can be widely used to estimate an actual trajectory of a projectile.

Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction (지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발)

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.510-518
    • /
    • 2023
  • This paper introduces a MATLAB graphical user interface (GUI) based software for performance analysis of navigation message and wide area differential correction of regional navigation satellite system (RNSS). This software was developed to analyze satellite orbit/clock-related performance of navigation message and wide area differential correction simulating RNSS for regions near Korea based on different distributions of monitor and reference stations. As a result of software operation, navigation message and wide area differential correction are given as output in MATLAB file format. From the analysis of output, it was confirmed that valid navigation message and wide area differential correction could be generated from the results about statistical feature of orbit and clock prediction errors, cm-level fitting errors for navigation message parameters, and 81.9% enhancement in range error for wide area differential correction.

SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position (가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘)

  • Kim, Taewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.463-472
    • /
    • 2017
  • Inertial Navigation System Alignment is the process to determine direction cosine matrix which is the transformation matrix between the INS body frame and navigation frame. INS initial position value is necessary to INS attitude calculation, so that user should wait until he get such value to start the INS alignment. To remove the waiting time, we propose an alignment algorithm that immediately starts after the INS power on by using pseudo initial position input and then is completed with attitude error compensation by entering true position later. We analyse effect of INS sensor error on attitude in process of time and verify the performance and usefulness of the close-loop alignment algorithm which corrects attitude error from the change of initial position.