• 제목/요약/키워드: 항법 오차

검색결과 380건 처리시간 0.031초

GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘 (Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator)

  • 김태희;신천식;김재훈
    • 한국위성정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.119-125
    • /
    • 2014
  • 본 논문에서 우리는 GNSS 항법 신호 생성 시뮬레이터 개발 연구를 수행하고, DCO(Digitally Clock Oscillator) 누적오차로 인한 의사거리 오차를 보상하기 위한 알고리즘을 구현한 후 시뮬레이션을 통하여 성능을 분석하였다. 일반적으로 신호를 생성하기 위하여 위성과 수신기의 위치 정보를 이용하여 초기의사거리 및 도플러를 계산한다. GNSS 신호생성기는 초기 의사거리를 이용하여 신호를 생성할 시점의 비트정보 및 코드정보를 생성하고 시간에 따라 계산된 도플러 정보를 이용하여 코드 및 반송파 출력주파수를 결정한 후 신호를 생성하게 된다. 이때 코드 및 반송파 출력주파수는 DCO를 이용하게 된다. DCO를 누적하여 샘플마다 코드 정보 및 비트정보를 추출하는데 DCO의 누적오차로 인하여 의사거리의 오차가 발생하게 된다. 의사거리 오차가 발생하면 수신기의 항법해에 영향을 주게 된다. 따라서 본 논문에서는 이러한 DCO 누적오차 성분을 제거하기 위한 DCO 누적오차 보상 알고리즘을 구현하고 실험을 통하여 의사거리 누적오차가 제거되며 항법해가 정밀해지는 것을 확인할 수 있었다.

GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석 (Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect)

  • 송종화;지규인;정성균;이상욱;김재훈
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo 위성항법시스템은 GPS에 대응하기 위해 EU에서 구축중인 시스템으로 실험위성GIOVE-A의 테스트가 끝났으며 두 번째 테스트 위성 GIOVE-B가 발사 예정이다. GPS와 Galileo 신호 모두 이용할 경우 도심지나 숲과 같은 음영지역에서도 가시위성수의 증가로 위치해를 구할 수 있고 보다 정확한 위치해를 얻을 수 있다. GPS와 Galileo 위성항법시스템은 독자적인 시각과 좌표체계를 갖추고 있으며 항법해를 계산을 위해서 서로 다른 오차 모델을 이용한다. 본 논문에서는 각 위성항법시스템의 오차 모델과 시각 및 좌표체계의 차이에 대해서 분석하였으며 이를 바탕으로 GPS와 Galileo 통합하는 항법 알고리즘을 구현하였다. 시뮬레이션을 통하여 시각, 좌표 시스템의 불일치에 의한 항법오차를 분석하고 가시위성수와 Dilution of Precision(DOP)를 계산하여 통합항법알고리즘의 성능을 검증하였다.

Loran H-field 안테나 방향에 따른 특성 및 성능 향상 기법 연구

  • 박슬기;손표웅
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 춘계학술대회
    • /
    • pp.203-205
    • /
    • 2019
  • 위성항법시스템의 안정적인 정보 제공의 요구사항은 점차 증가하고 있지만, 의도적인 전파교란 및 자연환경에 의하여 성능이 저하된다. eLoran 시스템은 위성항법시스템의 단점을 보완하기위한 대표적인 지상파항법시스템으로 고출력 신호로 의도적인 전파교란에 강인한 장점이 있다. eLoran 시스템에서 사용자는 E-field 또는 H-field 2가지 종류의 수신 안테나를 사용 환경에 따라 적합한 것을 사용한다. 접지가 필요없고 상대적으로 주변 전자장비의 잡음에 강인한 H-field안테나는 두 개의 루프로 구성되어 루프간의 위상과 이득차이로 일정한 원형의 지향성을 가지지 못한다. 그러므로 수신한 신호의 방향에 따라 측정치의 변화가 발생하므로 H-field 안테나를 사용시에는 수신하는 신호의 방향에 따른 오차를 제거해야한다. 본 논문에서는 H-field 안테나와 송신국간의 기하학적 방향오차에 따른 오차를 제거하기 위한 후처리 필터를 제안하였다. eLoran 모의 신호생성기를 활용하여 오차를 분석하고 모델링하여 제거하는 기법을 개발하였다. 제안한 기법을 검증하기 위하여 시뮬레이션과 차량실험을 통하여 오차를 확인하고 제거하여 성능향상을 확인하였다.

  • PDF

스트랩다운 관성항법시스템 성능평가 시험

  • 이상종;유창선;심요한;김종철
    • 항공우주기술
    • /
    • 제1권1호
    • /
    • pp.28-41
    • /
    • 2002
  • 본 논문의 목적은 실제 관성항법센서를 사용하여 개발된 스트랩다운형 관성항법시스템 및 이용 알고리즘에 대한 성능 및 오차를 평가하는 것이다. 시험은 관성항법센서의 조합을 두가지로 나누어 수행하였는데, 서로 다른 바이어스를 갖는 중급의 가속도계와 저급의 가 속도계가 사용되었으며, 자이로의 경우는 FOG(Fiber Optic Gyro)를 사용하였다(SDINS-1, SDINS-2). 관성항법시스템의 성능을 평가하기 위해서 두가지의 시험이 수행되었으며, 3축 운동 시험대를 이용한 지상정지시험과 차량을 이용한 단거리 주행시험을 수행하였다. 단거 리 주행시험의 결과는 정확도 20 mm를 갖는 DGPS(Differential GPS)의 시험결과와 비교 하였으며, 결과 및 오차를 나타내었다.

  • PDF

B-Value를 이용한 GBAS 지상국 오차 표준편차 모델 개발 및 성능 평가 (Development of B-Value Based GBAS Ground Facility Error Standard Deviation Model and Verification)

  • 전향식;안종선;이영재;최영규;성상경;염찬홍
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1232-1237
    • /
    • 2009
  • 국제민간항공기구 및 미 연방항공청에서는 항공기 이 착륙에 적용될 수 있는 지역위성항법보강시스템 (GBAS)에 대한 연구 개발을 수행하고 있다. 항공기 이 착륙에 위성항법시스템이 사용되는 만큼 시스템에 대한 무결성 확보가 최우선시 되어야 한다. 이를 위해 GBAS에서는 발생 가능성이 있는 오차 모델을 통해 위치 오차 예측값을 계산하고 이를 허용 한계치를 초과 하는 지 확인하고, 만약 초과하였을 경우 항공기는 GBAS 시스템 활용을 중단하고 다른 항법수단을 강구하게 된다. 하지만 높은 위치 오차 예측값은 시스템의 무결성 확보에는 도움이 되겠지만, 가용성 확보에 어려움이 있다. 본 논문에서는 제주도 국제공항에 설치되어 있는 항공우주연구원 GBAS 기준국의 실제 데이터를 사용하여, 위치 오차 예측값 계산에 사용될 수 있는 B-Value 기반의 지상국 오차 표준편차 모델 제시하였다. 또한 제시된 오차 표준편차 모델에 시그마 인플레이션을 적용하여 GBAS의 가용성 향상을 검증하였다.

PDOP 가중치 기반 정밀 탄궤적 정합 알고리즘 (A Precise Projectile Trajectory Registration Algorithm Based on Weighted PDOP)

  • 신석현;김종주
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.502-511
    • /
    • 2016
  • 최근 다양한 형태와 기능을 갖춘 스마트 무기들이 개발되고 있다. 화포탄의 경우 스마트 탄을 개발하기 위한 초기 연구로 신관 내부에 GNSS 수신기를 장착하여 탄자의 비행위치를 정밀하게 측정하고 이를 바탕으로 탄착점을 추정하는 연구가 진행되고 있다. 하지만, 수신기 성능 및 수신된 데이터에 포함된 다양한 오차유발 원인들로 인해 항법데이터의 위치정확도에 오차가 발생하게 된다. 본 논문에서는 PRODAS로부터 얻은 모의궤적 데이터를 수신기로부터 얻은 항법데이터에 포함된 PDOP 가중치를 적용하여 정합함으로써 탄의 발사부터 탄착까지의 전체 비행궤적 및 탄착점을 보다 정밀하게 추정하는 개선된 알고리즘을 소개한다.

위성항법 보강시스템 및 기술동향 (Trends of GNSS Augmentation System and Its Technologies)

  • 이상욱;형창희;유문희;신천식;안재영
    • 전자통신동향분석
    • /
    • 제31권3호
    • /
    • pp.20-31
    • /
    • 2016
  • 위성항법 보강시스템은 항법위성인 GPS 제공 항법신호를 수신 처리하여 각종 오차 성분을 제거시킴으로써 산출된 위치정확도, 시스템 가용도 및 제공신호에 대한 무결성 등이 향상됨에 따라 항공분야, 해양분야 및 차량내비 등 육상분야에서 요구하는 위치정확도뿐만 아니라 보강 및 무결정정보 등을 특정 성능 요구를 만족시킬 수 있도록 제공하는 시스템이다. GPS 신호에 대한 오차를 보강한 메시지를 활용하는 매체를 무엇을 활용하는지에 따라 구분할 수 있는데 위성을 이용하면 위성기반 보강시스템(Satellite Based Augmentation System: SBAS), 지상망을 이용하면 지상기반 보강시스템(Ground Based Augmentation System: GBAS), 비행기를 이용하면 항공기반보강시스템(Aircraft-Based Augmentation System: ABAS)으로 일컫는다. 본고에서는 위성항법 보강시스템의 현황과 그 관련 기술에 대하여 기술하고 한다.

  • PDF

위성항법시스템 및 보강시스템의 구축 현황

  • 남기욱;허문범;심주영
    • 항공우주산업기술동향
    • /
    • 제5권1호
    • /
    • pp.65-74
    • /
    • 2007
  • 현재 운용중인 전 세계적인 위성항법시스템(GNSS : Global Navigation Satellite System)은 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System)가 있다. 전 세계적으로 주로 사용되는 시스템은 GPS이며, GLONASS는 러시아의 경제사정 악화로 인하여 지속적인 위성발사가 이루어지지 못하고 있다. 추가적으로 추진되고 있는 위성항법시스템은 유럽의 갈릴레오(Galileo), 중국의 북두(Beidou), 일본의 JRANS(Japanese Regional Advanced Navigation System) 그리고 2006년 5월에 구축 프로젝트가 승인된 인도의 IRNSS(Indian Regional Navigation Satellite System)가 있다. 보강시스템의 경우, 미국 FAA(Federal Aviation Administration)는 광역오차보정시스템(WAAS)을 Raytheon사와 개발하였으며, 현재 착륙용 근거리오차보정시스템(LAAS)을 Raytheon사 및 Honeywell사와 함께 정부/산업체 공동개발 사업(GIP; Government Industry Partnership)으로 진행 중에 있다. 유럽은 EGNOS(European Geostationary Navigation Overlay Service)를 사용하고 있으며, 일본의 MSAT(MTSAT Satellite Based Augmentation System)와 인도의 GAGAN(GPS and GEO Augmented Navigation)은 추진 중이다. 이 글에서는 위성항법시스템과 위성항법 보강시스템의 현황을 살펴본다.

  • PDF

지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발 (Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction)

  • 박재욱;김부겸;기창돈;김동욱
    • 한국항행학회논문지
    • /
    • 제27권5호
    • /
    • pp.510-518
    • /
    • 2023
  • 본 논문에서는 지역 위성항법시스템의 항법메시지와 광역 보정정보 성능 분석을 위해 MATLAB GUI (graphic user interface) 기반으로 개발된 소프트웨어에 대해 소개한다. 본 소프트웨어는 한반도 및 주변 지역에 서비스를 제공하는 가상의 지역 위성항법시스템의 감시국 및 기준국 배치에 따른 항법메시지와 광역 보정정보의 위성 궤도/시각 관련 성능을 분석하기 위해 개발되었다. 본 소프트웨어 구동 시 항법메시지 및 광역 보정정보가 MATLAB 파일 형식으로 출력된다. 개발된 소프트웨어의 출력을 검증한 결과, 궤도 및 시계 예측 오차가 통계적 예측에 부합하며, 파라미터 피팅 오차가 cm 수준임을 확인하였다. 또한, 광역 보정정보가 측정치 차원의 오차를 81.9% 개선함을 확인하여 유효한 항법메시지 및 광역 보정정보 성능 분석이 가능함을 확인하였다.

가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘 (SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position)

  • 김태원
    • 한국항공우주학회지
    • /
    • 제45권6호
    • /
    • pp.463-472
    • /
    • 2017
  • 관성항법장치(Inertial Navigation System)는 항법 수행 전 동체 좌표계(body frame)와 항법 좌표계(navigation frame)사이의 좌표 변환 행렬(Direction Cosine Matrix: DCM)을 결정하여 초기자세를 구하는데 이 과정을 정렬(alignment)이라 한다. 정렬을 시작하기 위해서는 INS의 초기 위치 정보가 필요한데 해당 정보가 INS에 미리 입력되어 있지 않거나 당장에 초기위치를 모를 경우 이로 인해 INS에 전원이 인가된 후 정렬에 진입하기까지의 대기시간이 존재한다. 이러한 대기시간을 제거하기 위하여 본 논문에서는 INS 전원 인가 즉시 현재위치와 상이한 가상의 초기위치 값을 장입하여 스트랩다운 INS 정렬을 시작하고 추후에 정확한 위치를 INS에 입력하여 자세오차를 보상하는 정렬 알고리즘을 제시하였다. 항법 좌표계에서의 INS 센서 오차가 시간이 지남에 따라 자세오차에 미치는 영향성을 분석하여 가상의 초기위치 값 입력 시 발생하는 자세오차 만큼을 보상하는 폐루프 정렬 알고리즘의 성능을 검증하였다.