• Title/Summary/Keyword: 항력계수

Search Result 305, Processing Time 0.023 seconds

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Performance Analysis of Autorotation(1) : Analysis Method and the Effect of Aerodynamic table (자동회전의 성능해석(1) : 해석 기법과 공력 테이블의 영향)

  • Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Performance analysis was performed for an autorotating rotor. For a given airspeed, shaft angle, and collective pitch, the steady state of autorotation was judged by using the transient simulation method(TSM), then the thrust, lift, and drag coefficient for that state were computed. Average thrust was calculated from the instantaneous thrusts, in which the TSM was used in blade thrust integration. The analysis method was applied to the model rotor that had been tested by wind tunnel. Some comparison between analysis and test was provided. Two types of two-dimensional airfoil aerodynamic data were utilized in analysis, and they were made by Navier-Stokes Solver in terms of Reynolds and Reynolds-Mach number. The quantitative difference of results using two data set was examined and compared.

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

An Experimental Analysis of the Structural Stability Analysis of a Container Crane according to the change of the Boom Shape (붐 형상 변화에 따른 컨테이너 크레인 구조 안정성의 실험적 해석)

  • Lee S.W.;Han D.S.;Shim J.J.;Han G.J.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.371-372
    • /
    • 2006
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the change of the boom shape using wind tunnel test and provide a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary layer wind tunnel with $11.52m^2$ cross-section area. Each directional drag and overturning moment coefficients of a container crane according to the change of the boom shape were investigated.

  • PDF

The Flow Analysis of Supercavitating Cascade by Linear Theory (선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.79-86
    • /
    • 1996
  • In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations.

  • PDF

Aerodynamic Characteristic and Reference Trajectory Design of A/L Phase for the Re-Entry Vehicle (재진입 비행체의 A/L 단계 공력특성과 기준궤적 설계)

  • Jang, Jang-Sik;Baek, Jo-Ha;Min, Chan-Oh;Kim, Jong-Hun;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.753-760
    • /
    • 2008
  • The present study is concerned with aerodynamic characteristics and reference trajectory generation of Hope-X in Approach/Landing phase. To create reference trajectory generation in A/L phase, detailed informations on lift and drag coefficients of Hope-X must be provided. To obtain these informations, aerodynamic characteristics of Hope-X are analyzed using the commercial CFD code, Fluent. The A/L phase is conceptually divided into three sub-phases: the Steepglide Slope phase for stability of vehicle, the Flare Maneuver phase for safety landing, the Circular Flare for smooth connecting with these both phases. The reference trajectory is obtained by determination of flight-path angle through geometrical formulas with consideration of aerodynamic coefficient and dynamic characteristic.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

Control of Drag Force on a Circular Cylinder using a Detached Splitter (Detached Splitter를 이용한 원형 단면 실린더의 항력제어)

  • Sun, Seung-Han;Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.253-258
    • /
    • 2001
  • Control of drag force on a circular cylinder using a detached splitter plate is numerically studied for laminar flow. A splitter plate with the same length as the cylinder diameter(d) is placed horizontally in the wake region. Its position is described by the gap ratio(G/d), where G represents the gap between the cylinder base point and the leading edge of the plate. The drag varies with the gap ratio; it has the minimum value at a certain gap ratio for each Reynolds number. The drag sharply increases past the optimum gap ratio; this seems to be related to the sudden change in the bubble size in the wake region. This trend is consistent with the experimental observation currently available in case of turbulent flow. It is also found that the net drag coefficient significantly depends on the variation of base suction coefficient.

  • PDF

Numerical Analysis on Flow and Heat Transfer Characteristics in Louver Fin Heat Exchanger (루버휜형 열교환기내 유동 및 열전달 특성에 관한 해석적 연구)

  • 한진호;박상록;김일겸;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.398-403
    • /
    • 2000
  • Numerical analysis was conducted to investigate flow and heat transfer characteristics in louver fin exchanger, which were influenced by louver pitch, fin pitch, louver angle and inlet velocity. Standard $k-\varepsilon$ turbulent modelling was used in this study, and compared with laminar modelling. As a result of this study, Nusselt number became smaller as louver pitch or fin pitch was greater. Drag coefficient became smaller as louver pitch or fin pitch was greater, but it was little affected by inlet velocity.

  • PDF