• Title/Summary/Keyword: 항력계수

Search Result 305, Processing Time 0.026 seconds

Evaluating Method of Solitary Wave-Induced Tsunami Force Acting on an Onshore Bridge in Coastal Area (연안역의 육상 교량에 작용하는 고립파에 의한 지진해일파력의 평가법)

  • Kim, Do-Sam;Kyung, Kab-Soo;Lee, Yoon-Doo;Woo, Kyung Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.149-159
    • /
    • 2016
  • In this study, the solitary wave-induced tsunami force acting on an onshore bridges in coastal area was numerically modelled by means of TWOPM-3D based on Navier-Stokes solver and VOF method which can track free surface effectively. The validity of numerical analysis was verified by comparing the experimental tsunami bore force acting on vertical wall and column structure. In particular, the characteristics of tsunami force with the changing tsunami intensity were surveyed through numerical experiments. The availability of 3-dimensional numerical analysis was reviewed through the comparison between the existing numerical results and design criteria for each drag force coefficient by applying Morison equation considering only drag force. As reasonable and high-precision estimation method of tsunami force, it was suggested to apply the estimation method taking drag and inertial force into consideration at the same time.

Numerical and Experimental Study on the Aerodynamic Characteristics of FAST Fuselages (FAST 동체의 공력특성에 대한 수치 및 실험 연구)

  • Han, Cheol-Heui;Cho, Jeung-Bo;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • The effects of three fuselage head shapes and nonplanar ground surface on the aerodynamic characteristics of FAST fuselages are investigated using a boundary element method. Wind tunnel test is also performed to validate the present method and to identify the wall effect on the frictional drag which cannot be analyzed using the present method. It is found that the channel has an effect of increasing the lift of those investigated fuselages. The optimal head shape depends on the design conditions of the FAST and its guideway channel. Comparing the calculated induced drag with the measured total drag, it can be concluded that the profile drag is independent of the ground height. Thus, the present numerical method can be applied to the conceptual design of the high-speed ground transporters if only the profile drag of the vehicle in free flight is assumed to be known.

A study on establishing the aerodynamic database though the external flow method of a rotating vehicle (회전 운동하는 비행체의 외부 유동장 해석을 통한 공력데이터베이스 구축 연구)

  • Kang, Tae-Woo;Ahn, Jong-Moo;Lee, Hee-Rang;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.41-47
    • /
    • 2017
  • With the introduction of new technologies, ground weapons have led to the development of artificial intelligence and the attention of major developed countries. In this study, CFD was performed through the BLU-103 model to obtain aerodynamic data for aircraft that are subjected to rotational motion. To simulate the steady-state of a rotating body, the body was fixed and the principle of rotating the body by rotating the surrounding air was used. In order to examine the aerodynamic feasibility of the rotating aircraft, the analysis was carried out at intervals of $30^{\circ}$ angle from $0^{\circ}$ to $90^{\circ}$ for the simple shape and the side slip angle. It was confirmed that the drag coefficient for the simple model satisfies the quantitative results of 1.0 ~ 1.2 through CD presented in "Drag Book". The aerodynamic data was constructed by applying the valid input verified through the simple type analysis conditions to the actual shape, and the tendency was analyzed. The analysis confirmed that CX, CZ and CY increase not only in the simple model but also in the rotation of the actual model. Especially, the influence of CZ was judged to have contributed to the flight.

Analysis of the Aerodynamic Characteristics of 'Buhwal' Airplane (부활호의 공력 특성 해석)

  • Noh, Kuk-Hyeon;Cho, Hwan-Kee;Cheong, Seong-Gee;Cho, Tae-Hwan;Kim, Byung-Soo;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.882-887
    • /
    • 2012
  • This paper describes on the aerodynamic characteristics of the first domestically manufactured aircraft, Buhwalho, in Korea. The computational fluid dynamics(CFD) calculations and wind tunnel test were utilized to investigate the basic aerodynamic characteristics of aircraft with control surface deflections and attitude changes. Variations of lift, drag and pitching moment due to angles of attack and control surface deflections were analyzed and also flight stability due to side force, yawing and rolling moments caused by the change of sideslip angles, rudder and aileron deflections were discussed. Through this study, the meaningful aerodynamic data by CFD calculations and wind tunnel tests were obtained and the flight characteristics based on these data were confirmed accordingly by the flight tests.

Eulerian-based Numerical Modeling for Impingement Prediction of Supercooled Large Droplets (과냉각대형액적 충돌예측을 위한 오일러리안 기반 수치 모델링)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.647-654
    • /
    • 2012
  • Supercooled large droplet issues in aircraft icing have been continually reported due to the important safety considerations. In order to simulate the impingement behavior of large droplets, a two-dimensional and compressible Navier-Stokes code was developed to determine the flow field around the test model. Also, the Eulerian-based droplet impingement model including a semi-empirical approach for the droplet-wall interaction process and droplet break-up was developed. In particular, the droplet-wall interactions were considered as numerical boundary conditions for the droplet impingement simulation in the supercooled large droplet conditions. Finally, the present results were compared with the experimental test data and the LEWICE results. The droplet impingement area and maximum collection efficiency values between present results and wind tunnel data were in good agreements. Otherwise, the inclination of collection efficiency of the present result is over-predicted than the wind tunnel data around a lower surface of the NACA 23012 airfoil.

The Shearing Characteristics of the Model Otter Boards with the Flap (Flap을 부착한 모형전개판의 전개성능)

  • KIM Yong-Hae;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.484-488
    • /
    • 1987
  • The model experiments were performed in tile circular water tank on the simple cambered and the super-V otter boards attached with the slotted fowler flap at the trailing edge in order to develop more efficient shearing characteristics. The dimension of the model otter boards was varied slightly in the flap chord ratio $0.20\~0.22$ and in the area $432\~426cm^2$ in accordance with the flap angle $30\~50^{\circ}$. The maximum shearing coefficient $C_L=1.78$ and hydrodynamic efficiency $C_L/C_D=4.0$ in the superV type were higher than their efficiencies $C_L=1.75$ and $C_L/C_D=3.7$ in the simple cambered type. As the shearing forces of the otter boards with flap were increased $20\~30\%$ mere than these without flap in spite of increasing the drag and the instability. The effect of flap should be fully investigated for the application.

  • PDF

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Drag Reduction on n Circular Cylinder using a Detached Splitter Plate (분리된 분할판에 의한 원형단면 실린더의 항력감소)

  • Seon, Seung-Han;Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1632-1639
    • /
    • 2001
  • Control of drag farce on a circular cylinder using a detached splitter plate is numerically studied for laminar flow. A splitter plate with the same length as the cylinder diameter(d) is placed horizontally in the wake region. Its position is described by the gap ratio(G/d), where G represents the gap between the cylinder base point and the leading edge of the plate. The drag varies with the gap ratio; it has the minimum value at a certain gap ratio for each Reynolds number. The drag sharply increases past the optimum gap ratio; this seems to be related to the sudden change in bubble size in the wake region. This trend is consistent with the experimental observation currently available in case of turbulent flow. It is also found that the net drag coefficient significantly depends on the variation of base suction coefficient.

Estimation of Static Load Applied on Steam Generator Tubes (증기발생기 전열관에 작용되는 정적 하중 평가)

  • Park, Bumjin;Park, Jai Hak;Cho, Young Ki
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • If a plugged tube in a steam generator is broken, it may damage nearby intact tubes. To prevent this damage, it is recommended that a stabilizer is installed into the plugged tube. However, the installation cost of a stabilizer is very high. So studies are required to determine the conditions on which the installation is necessary. For this purpose static loads and dynamic loads applied on a tube should be known to estimate the residual strength and remaining fatigue and wear life of a plugged tube. Two-dimensional and three-dimensional computational fluid dynamics (CFD) analyses are performed to obtain the drag coefficient for cross flow to a tube. Using the obtained drag coefficient, the static load can be estimated and the residual strength of a plugged tube can be calculated. An inclined flow problem is also analyzed and the vertical and horizontal forces are obtained and discussed.