• Title/Summary/Keyword: 항공 드론 프레임

Search Result 6, Processing Time 0.023 seconds

The Applicability of Avionics Simulation Model Framework by Analyzing the Performance (항공용 시뮬레이션 모델 프레임워크 성능 분석을 통한 적용성 평가)

  • Seo, Min-gi;Cho, Yeon-je;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.336-343
    • /
    • 2021
  • Avionics corresponds to the brain, nerves and five senses of an aircraft, and consists of aircraft mounted electronic equipment of communication, identification, navigation, weapon, and display systems to perform flight and missions. It occupies about 50% of the aircraft system, and its importance is increasing as the technology based on the 4th industrial revolution is developed. As the development period of the aircraft is getting shorter, it is definitely necessary to develop a stable avionics SIL in a timely manner for the integration and verification of the avionics system. In this paper, we propose a method to replace the legacy SIL with the avionics simulation model framework based one and evaluate the framework based on the result of alternative application.

A Proposal for Software Framework of Intelligent Drones Performing Autonomous Missions (지능형 드론의 자율 임무 수행을 위한 소프트웨어 프레임워크 제안)

  • Shin, Ju-chul;Kim, Seong-woo;Baek, Gyong-hoon;Seo, Min-gi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.205-210
    • /
    • 2022
  • Drones, which have rapidly grown along with the 4th industrial revolution, spread over industries and also widely used for military purposes. In recent wars in Europe, drones are being evaluated as a game changer on the battlefield, and their importance for military use is being highlighted. The Republic of Korea Army also planned drone-bot systems including various drones suitable for echelons and missions of the military as future defense forces. The keyword of these drone-bot systems is autonomy by artificial intelligence. In addition, common use of operating platforms is required for the rapid development of various types of drones. In this paper, we propose software framework that applies diverse artificial intelligence technologies such as multi-agent system, cognitive architecture and knowledge-based context reasoning for mission autonomy and common use of military drones.

Expressway Falling Object recognition system using Deep Learning (딥러닝을 이용한 고속도로 낙하물 객체 인식 시스템)

  • Sang-min Choi;Min-gyun Kim;Seung-yeop Lee;Seong-Kyoo Kim;Jae-wook Shin;Woo-jin Kim;Seong-oh Choo;Yang-woo Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.451-452
    • /
    • 2023
  • 고속도로에 낙하물이 있으면 사고 방지를 위해 바로 치워야 하지만 순찰차가 발견하거나 신고가 들어오기 전까진 낙하물을 바로 발견하기 힘들며, 대다수의 사람들은 신고하지 않고 지나치는 경우가 있기에 이러한 문제점들을 개선하기 위해 드론과 YOLO를 이용하여 도로의 낙하물을 인식하고 낙하물에 대한 정보를 보내 줄 수 있는 시스템을 개발하였다. 실시간 객체 인식 알고리즘인 YOLOv5를 데스크톱 PC에 적용하여 구현하였고, F450 프레임에 픽스호크와 모듈, 카메라를 장착하여 실시간으로 도로를 촬영할 수 있는 드론을 직접 제작하였다. 개발한 시스템은 낙하물에 대한 인식 결과와 정보를 제공하며 지상관제 시스템과 웹을 통해 확인할 수 있다. 적은 인력으로 더 빠르게 낙하물을 발견할 수 있으므로 빠른 상황 조치를 기대할 수 있다.

  • PDF

Analysis Study on Influence that the Center Hole Notch of CFRP with Laminated Structure Affects (적층구조를 가진 CFRP의 중앙 노치구멍이 미치는 영향에 관한 해석적 연구)

  • Park, Jae-Woong;Kim, Eundo;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.177-182
    • /
    • 2018
  • In this paper, the fracture behaviour at CFRP laminated structure due to the vertical falling impact of the fight drone frame composed of CFRP was investigated through the analytical study. As CFRP consists of fiber differently from the existing plastic material, the fracture behaviour becoms complex. So, the preceding study is important through the analytical study before this experiment. By comparing with the existing study model at the same condition as the result of this study, the applied stress value is shown to decrease greatly at the analysis model with the center notch hole of the laminated CFRP drone frame. On the basis of this study result, the esthetic sense can be shown as the foundation data about the notch hole of drone frame are grafted onto the convergence technique.

Development of Autonomous Behavior Software based on BDI Architecture for UAV Autonomous Mission (무인기 자율임무를 위한 BDI 아키텍처 기반 자율행동 소프트웨어 개발)

  • Yang, Seung-Gu;Uhm, Taewon;Kim, Gyeong-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.312-318
    • /
    • 2022
  • Currently, the Republic of Korea is facing the problem of a decrease in military service resources due to the demographic cliff, and is pursuing military restructuring and changes in the military force structure in order to respond to this. In this situation, the Army is pushing forward the deployment of a drone-bot combat system that will lead the future battlefield. The battlefield of the future will be changed into an integrated battlefield concept that combines command and control, surveillance and reconnaissance, and precision strike. According to these changes, unmanned combat system, including dronebots, will be widely applied to combat situations that are high risk and difficult for humans to perform in actual combat. In this paper, as one of the countermeasures to these changes, autonomous behavior software with a BDI architecture-based decision-making system was developed. The autonomous behavior software applied a framework structure to improve applicability to multiple models. Its function was verified in a PC-based environment by assuming that the target UAV is a battalion-level surveillance and reconnaissance UAV.

Database Generation and Management System for Small-pixelized Airborne Target Recognition (미소 픽셀을 갖는 비행 객체 인식을 위한 데이터베이스 구축 및 관리시스템 연구)

  • Lee, Hoseop;Shin, Heemin;Shim, David Hyunchul;Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.70-77
    • /
    • 2022
  • This paper proposes database generation and management system for small-pixelized airborne target recognition. The proposed system has five main features: 1) image extraction from in-flight test video frames, 2) automatic image archiving, 3) image data labeling and Meta data annotation, 4) virtual image data generation based on color channel convert conversion and seamless cloning and 5) HOG/LBP-based tiny-pixelized target augmented image data. The proposed framework is Python-based PyQt5 and has an interface that includes OpenCV. Using video files collected from flight tests, an image dataset for airborne target recognition on generates by using the proposed system and system input.