• Title/Summary/Keyword: 항공자력탐사

Search Result 35, Processing Time 0.021 seconds

Aeromagnetic Exploration using Unmanned Aerial Vehicles: Current and Future Trends (무인항공기를 활용한 항공자력탐사: 연구 동향 및 향후 과제)

  • Kim, Bona
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.178-191
    • /
    • 2020
  • Unmanned aerial vehicle (UAV) technologies have grown rapidly over the past decade. Simultaneously, there is an increasing need for efficient high-resolution exploration techniques in complex environments. As a result, exploration technology using UAVs is gaining attention as an efficient method to complement and replace existing exploration technologies. In particular, magnetic exploration technology with UAVs is rapidly gaining ground in the field of exploration and is expected to be actively used in this field in the future. To properly use such technology in domestic exploration, it is necessary to review the latest research trends. Accordingly, this paper introduces the current state of UAV-based magnetic exploration technology studies and, based on this, discusses future research directions.

A Study on the Application of Drone Based Aeromagnetic Survey System to Iron Mine Site (드론 기반 항공자력탐사 시스템을 이용한 철광산 탐사 적용성 연구)

  • Min, Dongmin;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • The system of magnetic exploration with a drone flight was constructed and applied to the iron mine site. The magnetic probe system installed on the drone used a sensor as Bartington's fluxgate type magnetometer, Mag639 and the A/D converter to collect magnetic intensity values on the tablet PC. The drone flight control module is a highly expandable Pixhawk with allowing 15 minutes of flight by loading 3kg. Experiments on the magnetic field interference range were performed to remove the erroneous effect from the drone with applying RTK GPS to obtain the magnetic intensity value at the accurate position. The accurate location information enabled to obtain the gradient measurement of magnetic field by measuring twice at different altitudes. Also, by using the terrain information, we could eliminate the terrain effect by setting the flight path to fly along the terrain. These results are in line with the field experiments using the nuclear proton magnetometer G-858 of Geometrics Co., Ltd, which adds to the reliability of the drone based aeromagnetic survey system we constructed.

The Magnetic Anomaly Map of Korea (한국의 자력 이상도)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Regional airborne magnetic survey is very cost-effective mapping tool. Magnetic anomaly maps have abundant information, which are an important tool for understanding the geological evolution and mineral exploration. For this reason, the governments of many countries have made significant investment in the acquisition of airborne geophysical data over many decades. KIGAM (Korea Institute of Geoscience and Mineral Resources) began nationwide airborne magnetic mapping programme in 1982, and completed in 2017. The obtained magnetic data was reprocessed and magnetic database was built in 2018. In addition, the magnetic anomaly map of Korea with a scale of 1:1,000,000 was published. In this paper, we introduced a new magnetic anomaly map of Korea through describing the changing survey parameters during data acquisitions and history of data processing.

Aeromagnetic Pre-processing Software Based on Graphic User Interface, KMagLevellingTM (그래픽 사용자 인터페이스 기반 항공자력탐사 전처리 S/W, KMagLevellingTM)

  • Ko, Kwang-Beom;Jung, Sang-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Aeromagnetic survey generally require much more pre-processing steps than that of common land survey due to several complex and cumbersome steps included in pre-processing stage. Therefore it is desirable to use specific processing tool especially based on graphic user interface. For this purpose, aeromagnetic pre-processing software based on graphic user interface under the Windows environment, called $KMagLevelling^{TM}$ was developed and briefly introduced. In an aspect of its user-friendliness and originality, three noticeable features of $KMagLevelling^{TM}$ are summarized as the following (1) function of representation and handling for large amount of aeromagnetic data set as a visualization in the form of flight-path (2) function of selective exclusion of unwanted data by using survey area information expressed as polygon, and (3) function of selective removal processing for the irregular flight-path data acquired within the entire survey area by implementing the segmentation of flight-path technique.

우리나라의 물리탐사 기술과 과제

  • Hyeon, Byeong-Gu
    • The Science & Technology
    • /
    • v.9 no.8 s.87
    • /
    • pp.23-27
    • /
    • 1976
  • 우리나라에서 본격적으로 물리탐사를 시도한것은 1958~1960년에 실시한 항공자력탐사로서 그후 현재까지 불과 20년이 지나지 않았다. 그간 물리탐사의 기술발전으로 자원탐사분야에 많은 공헌이 있었다. 현재까지 주로 적용된 분야는 철자원탐사를 위한 자력탐사, 지하수조사를 위한 전기비저항탐사동, 연등의 통화금속광물탐사를 위한 각종 전기탐사, 제3기층 지질구조와 땜공사, 공업단지조성등의 기반암조사, 그리고 광산의 갱내 출수조사등을 위한 탄성파탐사, 우라늄자원을 위한 방사능탐사, 그리고 해저지질 및 자원조사를 위한 해상물리탐사등이다. 이와 동시에 석탄층조사를 위한 전기탐사 및 Model연구자력탐사의 전산처리 적용, 그리고 광물 및 암석의 물리적 성질등 학술분야에 대한 기초연구도 계속하여 왔다. 우리나라에 있어 물리탐사의 적용조건은 비교적 험악한 지형, 복잡한 지질구조, 광상의 불규칙 또는 소규모의 발달과 산재등이다. 이와 같은 특징은 탐사해석의 정도를 높이기 위하여 보다 고도의 과학기술문제의 해결을 요구하고 있으며 이와 동시에 현대적 탐사방법과 연구개발로 대상자원의 탐사지역확대와 지하심부 탐사등이 당면과제이다. 기술과제로서는 석탄 및 기타자원에 대한 물리검층탐사, 경상계 지질구조구명을 위한 탄성파탐사 및 동력탐사의 적용, 항공자력, 전자 및 방사능탐사 및 해양의 각종물리탐사의 기술개발이 있으며 그외 탐사자료의 전산처리기술 및 지구과학의 기초연구등이 있다.

  • PDF

A Review of Magnetic Exploration in Korea (한국의 육상 자력탐사)

  • Park, Yeong-Sue
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.403-416
    • /
    • 2006
  • Magnetic method is rapid, cheap and simple geophysical exploration technique, and has wide range of applications such as resources prospecting, geological structure investigation and even geotechnical and environmental problems. Especially, aeromagnetics gives fundamental and useful geoscientific data fnr not only assessment of potential resources, but also national land planning. Magnetic method, perhaps the oldest geophysical technique, was relatively early introduced into Korea. Documents during Japanese occupation says that magnetic method was used for exploring metallic ore deposits and hot spring, and that a geomagnetic observatory was operated. From mid 1950's, after Korean War, magnetic explorations for natural resources such as metallic ore, uranium, coal, and groundwater were intensively executed for industrialization. Apache aeromagnetic survey project during $1958{\sim}1959$ and its ground follow-up surveys are typical and important cases in those days. Magnetic survey techniques were rapidly advanced during 1970's and 1980's with improvements of instruments, growth of geophysical manpower, and availability of computers. The national aeromagnetic mapping project by KIGAM in 1981 showed the improved technical capability of those days. Decline of mining industry since mid 1980's moved the exploration objects from traditional resources to new ones such as groundwater and geothermal resources, and applications to investigation of geological structure were revived. Recently appeared applications such as natural hazard assessment, and engineering and environmental studies increased the magnetic method's utility in the realm of exploration.

Reduction of magnetic anomaly observations from helicopter surveys at varying elevations (고도가 변화하는 헬리콥터 탐사에서 얻어지는 자력이상의 변환)

  • Nakatsuka, Tadashi;Okuma, Shigeo
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Magnetic survey flights by helicopters are usually parallel to the topographic surface, with a nominal clearance, but especially in high-resolution surveys the altitudes at which observations are made may be too variable to be regarded as a smooth surface. We have developed a reduction procedure for such data using the method of equivalent sources, where surrounding sources are included to control edge effects, and data from points distributed randomly in three dimensions are directly modelled. Although the problem is generally underdetermined, the method of conjugate gradients can be used to find a minimum-norm solution. There is freedom to select the harmonic function that relates the magnetic anomaly with the source. When the upward continuation function operator is selected, the equivalent source is the magnetic anomaly itself. If we select as source a distribution of magnetic dipoles in the direction of the ambient magnetic field, we can easily derive reduction-to-pole anomalies by rotating the direction of the magnetic dipoles to vertical.

A Development of Fluxgate Sensor-based Drone Magnetic Exploration System (플럭스게이트 센서 기반 드론 자력탐사 시스템 개발)

  • Noh, Myounggun;Lee, Seulki;Lee, Heuisoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, we have developed a drone magnetic exploration system (proto-type) using a fluxgate magnetic sensor. Hardware of the system consists of a fluxgate magnetometer, an inertial measurement unit (IMU), a GPS, and a communication module. And we have developed monitoring software, which enables it to transmit the measured data to the ground control system (GCS) in real time. The measured magnetic data are finally saved as 1 Hz data after passing through a notch filter and a band-pass filter. For verification of this system, a preliminary test was conducted to check the magnetic responses of a magnetic object first, then the field test was carried out in two iron mines. We tested the developed system on the field test in Pocheon, Gyeonggi and Jeongseon, Gangwon. The magnetic data from the developed drone system was very similar to those from unmanned airship system developed by Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result, preliminary experiment and field test have demonstrated that this system is applicable for outdoor aeromagnetic exploration. It requires more studies to improve filter function and instrument performance to minimize noise in the future.

Interpretation of Airborne Magnetic and Radioactive Data for the Uranium Deposit in Geumsan Area (금산 함우라늄광상 분포지역의 항공자력/방사능 탐사자료 해석)

  • Shin, Eun-Ju;Ko, Kwangbeom;An, Dongkuk;Han, Kyeongsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • We conducted the airborne magnetic and radiometric survey for the characterization of the black shale related and pyrometamorphic uranium deposits distributed in Geumsan area. For the successful characterization of the uranium deposits, the general geological and structural geological features were investigated based on the lithological and linear feature analysis to individual magnetic and radiometric data as the first step. Lithological analysis from the magnetic reduction to the pole and downward continuation map revealed that prominent positive anomalies caused by black and dark gray slate member were clearly recognized as magnetic sources. These results indicate that magnetic survey, even though it is not a direct method for the detection of uranium, can be a useful tool in uranium detection. By the linear feature analysis based on 2nd vertical derivative and curvature map, two linearments corresponded the gray hornfels and black slate member were extracted and in succession, the additional uranium potential zone was inferred. Final discrimination whether uranium-rich or not was confirmed by radiometric and uranium anomaly map. From these analysis, we finally concluded that uranium deposit originated by pyrometamorphic process was confined near the intrusive area only. On the contrary, it was found that black shale related uranium deposit is distributed and extended through out the entire survey area with south-west to north-east direction. In addition, from the linear feature analysis based on radiometric total anomaly map, the typical discontinuous characteristics were recognized in areas where uranium-contained linearments cross the faults. From the above discussion, we concluded that airborne magnetic and radiometric survey are complementary to each other. So it is preferable to carry out simultaneously for the efficient data processing and fruitful interpretation.