• Title/Summary/Keyword: 항공난류

Search Result 148, Processing Time 0.02 seconds

열량계 채널에 대한 3차원 열전달 해석

  • Park, Tae-Seon;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.142-150
    • /
    • 2003
  • Turbulent flows and related heat transfer in a square heated duct is investigated by a turbulence model and a large eddy simulation. The cooling channel of calorimeter is modeled to the square duct. The nonlinear k-ε-fμ model of Park et al. [3] is slightly modified and their explicit heat flux model is employed. The Reynolds number is varied in the range 4000≤Reb≤20000. The heat transfer is closely linked to the secondary flows which driven by the turbulent motion. Its magnitude is 1~3% of the mean streamwise velocity. The relation of Nu~Re0.8Pr0.34 is validated by comparing with the predicted Nu of k-ε-fμ model. Finally, the coherent structures and thermal fluctuations are scrutinized.

  • PDF

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part II - Navier-Stokes Equations (비정렬 격자계에서 LU implicit scheme의 수렴성 및 안정성 해석: Part II - Navier-Stokes 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Navier-Stokes equations on unstructured meshes. For this purpose the characteristics of the LU scheme was initially studied for a scalar model equation. Then the analysis was extended to the Navier-Stokes equations. It was shown that the LU scheme has an inherent stiffness in the streamwise direction. This stiffness increases when the grid aspect ratio becomes high and the cell Reynolds number becomes small. It was also shown that the stiffness related to the grid aspect ratio can be effectively eliminated by performing proper subiteration. The results were validated for a flat-plate turbulent flow.

Effects of Slot Configurations on the Passive Control of Oblique-Shock-Interaction Flows (슬롯 형상이 경사충격파 간섭유동의 피동제어에 미치는 영향에 관한 연구)

  • Jang, Seong-Ha;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.18-24
    • /
    • 2006
  • Passive control of the shock wave/turbulent boundary-layer interaction utilizing slotted plates and a porous plate over a cavity has been carried out. Effect of various slot configurations on the characteristics of the interaction has been observed. Pitot/wall surface pressure distributions and flow visualizations including Schlieren images, kerosene-lampblack tracings and interference fringe patterns over a thin oil-film have been obtained at the downstream of the shock interactions. For the streamwise-slot configuration, a local higher pitot pressure was noticed at the downstream of the interaction as compared with the case of no control, however, not much improvement in pitot pressure was observed for the spanwise-slot configuration.

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

Development of the Korean Peninsula-Korean Aviation Turbulence Guidance (KP-KTG) System Using the Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration (KMA) (기상청 고해상도 지역예보모델을 이용한 한반도 영역 한국형 항공난류 예측시스템(한반도-KTG) 개발)

  • Lee, Dan-Bi;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.367-374
    • /
    • 2015
  • Korean Peninsula has high potential for occurrence of aviation turbulence. A Korean aviation Turbulence Guidance (KTG) system focused on the Korean Peninsula, named Korean-Peninsula KTG (KP-KTG) system, is developed using the high resolution (horizontal grid spacing of 1.5 km) Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration (KMA). The KP-KTG system is constructed first by selection of 15 best diagnostics of aviation turbulence using the method of probability of detection (POD) with pilot reports (PIREPs) and the LDAPS analysis data. The 15 best diagnostics are combined into an ensemble KTG predictor, named KP-KTG, with their weighting scores computed by the values of area under curve (AUC) of each diagnostics. The performance of the KP-KTG, represented by AUC, is larger than 0.84 in the recent two years (June 2012~May 2014), which is very good considering relatively small number of PIREPs. The KP-KTG can provide localized turbulence forecasting in Korean Peninsula, and its skill score is as good as that of the operational-KTG conducting in East Asia.

Investigation of Pintle Shape Effect on the Nozzle Performance (핀틀 형상이 노즐 성능에 미치는 영향에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.790-796
    • /
    • 2008
  • Typical solid rocket motors have a fixed propellant grain shape and nozzle throat size resulting in a fixed motor thrust. Pintle nozzle has been suggested as a means of providing variable thrust while maintaining the inherent advantage of solid rocket motors. In this study, the pintle shape effect on nozzle performance is investigated using experimental-aided Computational Fluid Dynamics(CFD). The pintle shape is modified by a principle of monotony. CFD analysis is performed using Fluent by applying the turbulent model. This analysis indicates that nozzle thrust and pintle load are influenced by change of nozzle shock pattern and flow separation due to pintle shape and there exists a high-performing pintle shape.

Dynamic Stall Control Using Aerodynamic Sensitivity Analysis (민감도 해석을 이용한 동적실속 제어)

  • Ahn, Tai-Sul;Kim, Hyoung-Jin;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.10-20
    • /
    • 2002
  • The present paper investigates methods to control dynamic stall using an optimal approach. An unsteady aerodynamic sensitivity analysis code is developed by a direct differentiation method from a two-dimensional unsteady compressible Navier-Stokes solver including a two-equation turbulence model. Dynamic stall control is conducted by minimizing an objective function defined at an instant instead of integrating for a period of time. Unsteady sensitivity derivatives of the objective function are calculated by the sensitivity code, and optimization is carried out using a linear line search method at every physical time step. Numerous examples of dynamic stall control using control parameters such as nose radius, maximum thickness of airfoil, or suction show satisfactory results.

Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine (초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구)

  • Lee,Eun-Seok;Kim,Jin-Han;Jo,Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.99-106
    • /
    • 2003
  • Geometrical design variables are numerically investigated to improve aerodynamic performance of the supersonic impulse turbine of a turbopump in a liquid rocket engine. Aerodynamic redesign was performed for maximization of the blade power. Four design variables considered are blade angle, blade thickness and radii of upper and lower arc blade with appropriate constraints. A fast Navier-Stokes solver was developed and Chien's k-$\varepsilon$ turbulence modelling was used for turbulence closure. In initial shape, a flow separation was found in the middle of blade chord. However, it disappeared in final shape via its geometrical design variable change. About 3.2 percent of blade power was increased from this research.

Numerical Analysis of the Vortex Shedding past a Square Cylinder with Moving Ground (지면 운동에 따른 정사각주 후류의 와류 유동장 수치 해석 Part I. 고정 지면과 이동 지면 비교)

  • Kim, Tae-Yoon;Lee, Bo-Sung;Lee, Dong-Ho;Kohama, Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.1-7
    • /
    • 2005
  • Incompressible Reynolds-averaged Navier-Stokes equations with $\varepsilon{-SST}$ turbulence model are adopted for the investigation of the flow fields between the square cylinder and the ground. When the grounds moves, the diminish of the shear layer intensity on the ground promotes the interaction between the lower and the upper separated shear layer of the cylinder. Hence vortex shedding occurs at the lower gap height than stationary ground. In the moving ground, the secondary shedding frequency disappears due to the absence of the separation bubble on the ground which exists in the stationary ground. In addition, the shedding frequency and aerodynamic coefficients in the moving ground become higher than those of the stationary ground.

Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow (초음속 기저유동의 우수한 예측을 위한 DES 모델상수의 동적 보정)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.99-110
    • /
    • 2010
  • The DES analysis of strong compressibility flow, LES mode is intentionally performed in boundary layer with the conventional empirical constant $C_{DES}$ value of 0.65. In this study, an expression is suggested to determine the $C_{DES}$ value dynamically by using a distribution function of the ratio of turbulence length scale and wall distance which is used in S-A DDES model for RANS mode protection. The application of the dynamic $C_{DES}$ presents better prediction than previous results those used constant but different $C_{DES}$ values.