• Title/Summary/Keyword: 항공기 브레이크

Search Result 20, Processing Time 0.02 seconds

An Improvement Study on Brake System for KUH-1 (한국형 기동헬기의 제동장치 개선에 관한 연구)

  • Choi, Jae Hyung;Lim, Hyun-Gyu;Yoon, Jong Jin;Kang, Deuk Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.292-299
    • /
    • 2017
  • The KUH-1's Wheel Brake Assembly which is Brake System is an essential component to perform flight mission for pilot. It has function of taxing, differential braking and parking to sustain landing capability. However, the skid and abrasion of tire were occurred in mass-produce operation. Also, if it is occurred on the ground, the flight can not be performed. In this case, the defect is a major cause of the decrease in the operation rate of aircraft. In this paper, the cause of the defect in flight was identified and the failure process was organized. Also, it describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Aircraft Accumulator Design Study (항공기용 축압기 설계)

  • Kim, Jin-Won;Kim, Keun-Bae;Park, Jong-Hu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • Basic characteristics of wheel brake accumulator for aircraft is studied. Wheel brake accumulator maintains the braking pressure for parking mode, and also it supplies the hydraulic pressure to the wheel brake system for emergency mode. The design requirements of wheel brake accumulator are analyzed and the initial sizing is conducted. A wheel brake accumulator consists of a cylinder and a brake control module, and the basic configuration and detail components are presented. Again, structural static analysis of vessel is performed with NASTARN/PATRAN for preliminary design.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

Flight Demonstration Test of a Smart Skin Antenna for Communication and Navigation (통신 항법용 스마트 스킨 안테나의 비행데모시험)

  • Kim, Min-Sung;Park, Chan-Yik;Cho, Chang-Min;Yoon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.567-575
    • /
    • 2014
  • This paper suggests an installation procedure of a smart skin prototype into an aircraft, flight demonstration test procedures and test results. Four communication and navigation antennas are embedded into one Conformal Load-bearing Antenna Structure(CLAS). Log periodic patch type antenna was designed as a multi-band antenna to cover four antenna frequency bands. The requirements of CLAS were verified by ground tests before aircraft installation. A CLAS speed-brake was installed into KT-1 aircraft and performances of dual antennas were verified as multi-antenna tests on the ground. Electromagnetic compatibility tests were conducted to check compatibility between the CLAS and all existing equipments. Flight demonstration tests were conducted by one sortie of flight test for one antenna. The activeness and continuity of communication and navigation signal during the flight, null area of antenna signal along the circling flight were monitored. The embedded antennas worked better than expected during four sorties of flight tests.

항공기용 타이어의 인증기술동향

  • Park, Geun-Yeong;Choe, Ju-Won;Lee, Gyeong-Cheol;Jin, Yeong-Gwon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.4 no.2
    • /
    • pp.68-75
    • /
    • 2006
  • 항공기용 타이어는 지상에 있는 경우에 항공기의 중량을 견뎌야 하고, 활주 및 착륙 과정에서는 열발생 및 마모에 견디면서 탑승객에게 안정감과 안락함을 제공할 수 있어야 한다. 따라서 타이어 구조는 항공기 하중뿐 아니라 높은 각속도에서 발생하는 작용력을 견뎌야 하며 착륙시에는 브레이크에 의한 높은 동적 제동하중을 지면에 전달하는 동시에 지면과의 충돌충격을 흡수할 수 있는 능력이 요구된다. 이러한 모든 기능은 타이어의 수명기간동안 신뢰성 있게 유지되어야 한다. 현재 항공기에 사용되는 타이어는 바이어스 타이어가 주류를 이루고 있지만 최근 개발되는 신규 항공기를 중심으로 래디얼 타이어의 사용이 증가하고 있다. 이러한 최신의 산업동향을 반영하여 항공기용 타이어에 대한 안전기준이 보완되고 있다. 본 글에서 항공기용 타이어에 대한 기술표준품표준서를 기준으로 최신 인증기술동향에 대하여 고찰하고자 한다.

  • PDF

Reliability Evaluation of Aircraft Brake Disk using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상 기법을 이용한 항공기 브레이크 디스크의 신뢰성 평가)

  • Kwak, Nam-Su;Kim, Jae-Yeol;Gao, Jia-Chen;Park, Dae-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-43
    • /
    • 2016
  • Carbon fiber-reinforced silicon carbide (Cf-SiC) and SiC / SiC composites have high thermal conductivity, and excellent corrosion and wear resistance, a low coefficient for thermal expansion and are lightweight. This is why they are commonly used in parts of the aerospace industry to develop an aircraft thrust deflector, jet vane, combustion chamber, elevens, body flap, and a shingle. So, understanding how this state-of-the-art Cf-SiC affects both internal and external crack detection and determining issues during the manufacturing process of composite materials, should be evaluated according to valuation techniques in the external environment. In this paper, we apply a non-contact air ultrasonic technique of non-destructive testing techniques to perform a study on internal defect detection identification and assessment of carbon-fiber reinforced silicon carbide composites to perform basic research and applied research.

Friction and Wear Characteristics and Reliability Estimation of Aircraft Brake System (항공기 제동장치의 마찰.마멸 특성 및 신뢰도 예측)

  • 장동관;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.127-133
    • /
    • 2003
  • Pin-on-disk and hardness tests using mechanical components of M-20J aircraft braking system were performed to identify the friction and wear characteristics. The intention of this work was also to analyze a 5-year term maintenance record of an M-20J aircraft. used for flight training at Hankook Aviation University, and to determine the reliability of the brake system of an M-20J aircraft. The mean wear coefficients of the lining sliding against the brake disk were compared between the test and reliability estimation to obtain a predictive wear model.

Thermo-elastic Frictional Contact Analysis of Airplane Brakes (항공기 제동장치의 열탄성 마찰 접촉 해석)

  • Lee, Chang-Won;Choi, Yong-Gie;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.889-894
    • /
    • 2001
  • A three dimensional transient thermo-elastic frictional contact analysis of airplane brakes is performed. The velocity history of the airplane during braking is calculated from energy conservation law. ABAQUS code is used in the analysis, and user subroutines supported in the ABAQUS are coded to calculate the frictional heat generation between pads and linings attached to back/pressure plate and rotor, respectively. Numerical results are compared with experimental ones.

  • PDF