• Title/Summary/Keyword: 항공기 기술

Search Result 1,404, Processing Time 0.024 seconds

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Research about CAVE Practical Use Way Through Culture Content's Restoration Process that Utilize CAVE (가상현실시스템(CAVE)을 활용한 문화 Content의 복원 과정을 통한 CAVE활용 방안에 대한 연구)

  • Kim, Tae-Yul;Ryu, Seuc-Ho;Hur, Yung-Ju
    • Journal of Korea Game Society
    • /
    • v.4 no.3
    • /
    • pp.11-20
    • /
    • 2004
  • Virtual reality that we have seen from the movies in 80's and 90's is hawing near based on the rapid progress of science together with a computer technology. Various virtual reality system developments (such as VRML, HMD FishTank, Wall Type, CAVE Type, and so on) and the advancement of those systems make for the embodiment of virtual reality that gives more sense of the real. Virtual reality is so immersive that makes people feel like they are in that environment and enable them to manipulate without experiencing the environment at first hand that is hard to experience in reality. Virtual reality can be applied to the spheres, such as education, high-level programming, remote control, surface exploration of the remote satellite, analysis of exploration data, scientific visualization, and so on. For some connote examples, there are training of a tank and an aeroplane operation, fumiture layout design, surgical operation practice, game, and so on. In these virtual reality systems, the actual operation of the human participant and virtual workspace are connected each other to the hardware that stimulates the five senses adequately to lend the sense of the immersion. There are still long way to go, however, before long it will be possible to have the same feeling in the virtual reality as human being can have by further study and effort. In this thesis, the basic definition, the general idea, and the kind of virtual reality were discussed. Especially, CAVE typed in reality that is highly immersive was analyzed in definition, and then the method of VR programming and modeling in the virtual reality system were suggested by showing the restoration process of Kyongbok Palace (as the content of the original form of the culture) that was made by KISTI(Korea Institute of Science and Technology Information) in 2003 through design process in virtual reality system. Through these processes, utilization of the immersive virtual reality system was discussed and how to take advantage of this CAVE typed virtual reality system at the moment was studied. In closing the problems that had been exposed in the process of the restoration of the cultural property were described and the utilization plan of the virtual reality system was suggested.

  • PDF

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.

A Chronological and Legal Study on Mitigation of Height Restriction in Flight Safety Zone around Airports - Mostly Regarding Civilian Airports - (공항 비행안전구역 고도완화의 연혁적 고찰과 해결방안에 관한 정책적·법적 고찰 - 민간 공항 중심으로 -)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.2
    • /
    • pp.225-246
    • /
    • 2020
  • More than technical or academic matter, mitigation of height restriction around airports is about up-dating out-dated policies that have not kept up with rapidly developing aircraft and air traffic control technologies. Above all, instead of calling out 'flight safety' that the public do not comprehend, it is important to examine and carry out measures that can protect people's right of property. MOLIT(Ministry of Land, Infrastructure, and Transport) after reviewing ICAO's Obstacle Limitation Surface TF, made an announcement to provide further plans that would apply to contracting states from 2026. However, residents of redevelopment areas near Kimpo international airport asserted that MOLIT's policy overlooks the reality of the redevelopment zone. ICAO, UN's specialized agency for civilian aviation, recommends in Annex 14, 4.2.4 that contracting states conduct an aeronautical study to determine the flight safety of horizontal surface(45m), excluding approach surface, and to mitigate height restrictions if no threat is found. Numerous countries including the United States have been following this recommendation and have been able to effectively protect people's right of property, whereas the South Korean government have not following it so far. The number of height restriction mitigation cases in the recent three months (2019. 7. 15~10. 14.) FAA of the United States have allowed after conducting an aeronautical study reaches 14,706. Japan and Taiwan also reconstruct airspace around airports in metropolitan areas in order to protect people's right of property. Just as the United States is following, MLIT should follow ICAO's recommendation in Annex 14. 4.2.4(Vol. 1. Airport Construction / Operation) and protect people's right of property by first applying aeronautical studies to the horizontal surface(45m) of flight safety zones until the specifics of ICAO's 2026 TF materialize.

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Proposal for improved implementation of aviation safety reporting system (항공안전보고제도 개선방안에 대한 연구)

  • Chang, Man-Heui
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.337-371
    • /
    • 2015
  • In recent years, aviation safety has been facing new hazards due to the rapidly changing environment in which aircraft operation increasingly finds. Continuously increasing air traffic volume, integration of various cultures from many States, and many other changes are the causal factors of the new risks. To identify such new hazards and risks, the government of the Republic of Korea (ROK) established aviation safety reporting systems in accordance with the international standards of the Convention on International Civil Aviation. However, there are some misunderstandings by the government in operating and by the personnel who take part in these reporting systems. Everybody should understand that aviation safety reporting system is not a punitive measure but a tool for collecting data in order to improve safety. In addition, such a system can be utilized further to promote an improved awareness on the need for a proper safety culture on the part of both the government, the industry and the personnel. This paper includes studies on international standards, relevant regulations in the United States and the United Kingdom. Moreover, this paper proposes to the government of ROK several points to improve their own system, including integration of the existing reporting systems, improvement of reporting items, implementation of safety data taxonomy and the establishment of safety data protection.

Can Lufthansa Successfully Limit its Liability to the Families of the Victims of Germanwings flight 9525 Under the Montreal Convention?

  • Gipson, Ronnie R. Jr.
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.279-310
    • /
    • 2015
  • The Montreal Convention is an agreement that governs the liability of air carriers for injury and death to passengers travelling internationally by air. The Montreal Convention serves as the exclusive legal framework for victims and survivors seeking compensation for injuries or death arising from accidents involving international air travel. The Montreal Convention sets monetary liability caps on damages in order to promote the financial stability of the international airline transport industry and protect the industry from exorbitant damages awards in courts that would inevitably bankrupt an airline. The Convention allows a litigant suing under the Convention to avoid the liability caps in instances where the airline's culpability for the injury or death is the direct result of negligence, another wrongful act, or an omission of the airline or its agents. The Montreal Convention identifies specific locations as appropriate venues to advance claims for litigants seeking compensation. These venues are closely tied to either the carrier's business operations or the passenger's domicile. In March 2015, in an act of suicide stemming from reactive depression, the co-pilot of Germanwings flight 9525 intentionally crashed the aircraft into the French Alps killing the passengers and the remaining crew. Subsequent to the crash, there were media reports that Lufthansa made varying settlement offers to families of the passengers who died aboard the flight ranging from $8,300 USD to $4.5 Million USD depending on the passengers' citizenship. The unverified offers by Lufthansa prompted outcries from the families of the decedent passengers that they would institute suit against the airline in a more plaintiff friendly jurisdiction such as the United States. The first part of this article accomplishes two goals. First, it examines the Montreal Convention's venue requirement along with an overview of the recoverable damages from countries comprising the citizenship of the passengers who were not American. The intentional crash of Germanwings flight 9525 by its First Officer encompasses the possibility that Lufthansa may be exposed to unlimited compensatory damages beyond the liability caps contained in the Convention. The second part of this article explores the application of the Convention's liability limits to the Germanwings flight to demonstrate that the likelihood of escaping the liability limits is slim.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations (인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰)

  • Hong, Sang-Hoon;Jang, Min-Jung;Jung, Seong-Woo;Park, Seo-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1503-1517
    • /
    • 2018
  • Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.