• Title/Summary/Keyword: 항공기탑재

Search Result 323, Processing Time 0.024 seconds

Verification of GPS/INS for the SmartUAV using Aircraft Flight Test and Automobile Road Test (스마트무인기 위성관성항법장치의 비행시험 및 차량시험을 통한 검증)

  • Chang, Sung-Ho;Yoo, Jang-Sik;Gwak, Min-Gyu;Hong, Jin-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • This is a comparative study of three inertia navigation units and focuses on the verification of reliability about GPS/INS for the SmartUAV(DGNS). Those GPS/INS have been tested using a manned aircraft and an automobile. The comparative aspect of units include details about the GPS positions and the inertia sensor performance. With the flight scenario, the DGNS guarantees the reliability of the navigation operation and performs the flight test for the development of the SmartUAV.

국내 공항 주변환경에서의 전리층 폭풍이 항공용 지역위성항법 보강시스템에 미치는 영향 및 비행 시험을 통한 Code-Carrier Divergence Test 결과 분석

  • Ju, Jeong-Min;Heo, Yun-Jeong;Jo, Jeong-Ho;Heo, Mun-Beom
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.35.3-35.3
    • /
    • 2010
  • 항공용 지역위성항법 보강시스템(Ground Based Augmentation System, GBAS)은 지상에서 위성항법시스템에 대한 위치보정정보와 무결성 정보를 생성 및 제공하여 공항 주변 항공기의 정밀 이착륙을 돕는 지상기반의 시스템이다. 이 시스템은 기본적으로 위성항법신호를 사용하기 때문에 전리층 영향을 받게 되는데 특히 전리층 폭풍(Ionospheric storm)의 경우 공간적으로 급격한 위치오차 차이를 발생시키기 때문에 안정적인 항공기의 정밀이착륙을 위해서는 전리층 폭풍의 영향을 최소화 하는 것이 중요하다. 이를 위하여 현재 항공용 지역위성항법 보강시스템의 지상시스템(Ground Facility)과 항공기 탑재시스템에서의 전리층 폭풍에 대한 정확한 감시와 전리층 폭풍의 지배적 영향을 받는 위상항법신호를 제거하거나 보완하는 방식 등 전리층 폭풍의 영향을 최소화하기 위한 기법들이 계속해서 연구 중이다. 이 논문에서는 2001년과 2003년 미국에서 발생한 전리층 폭풍에 대한 위성항법데이터 분석 결과와 기존의 연구결과를 기반으로 전리층 폭풍에 대한 모델링과 지상시스템과 항공기 간의 공간적 상이현상(Spacial decorrelation)을 고려하여 전리층 폭풍이 항공기 이착륙에 미치는 영향에 대한 분석 결과를 제시한다. 전리층 폭풍에 대한 수학적 모델링을 하기 위해서는 전리층 폭풍의 물리적 특성에 대한 이해와 전리층 폭풍 발생 시 획득한 위성항법 데이터를 이용한 통계학적 분석이 선행되며 이러한 분석결과와 항공기 이착륙에 절차를 반영하여 항공기에 미치는 영향 분석을 위한 수학적 모델을 완성하였다. 완성된 모델을 국내 공항에서 실제 비행시험을 통하여 획득한 위성항법데이터에 적용하여 전리층 폭풍이 국내 공항에서 항공기 이착륙에 어떠한 영향을 미치는지를 분석하였다. 또한, 대표적 전리층 폭풍 감지기법 중 하나인 Code-Carrier Divergence Test 알고리즘을 적용한 결과도 함께 제시하였다. 이 논문의 결과는 항공용 지역위성항법 보강시스템에 대한 전리층 폭풍의 영향을 최소화하기 위한 기법 연구의 기반이 되며 시스템의 성능평가를 위한 다양한 시뮬레이션환경의 하나로서도 활용이 가능할 것이다.

  • PDF

Extraction of Sea Surface Temperature in Coastal Area Using Ground-Based Thermal Infrared Sensor On-Boarded to Aircraft (지상용 열적외선 센서의 항공기 탑재를 통한 연안 해수표층온도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin;Kim, Seung Hee;Cho, Yang-Ki;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.797-807
    • /
    • 2014
  • The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.

Response Methods against Acts of Terrorism That Utilize Unmanned Aircraft (무인항공기 테러의 대응방안)

  • OH, Jea-Hwan
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.61-83
    • /
    • 2012
  • Al-Qaeda follower who planned to attacks the Pentagon and the Assembly by unmanned aircraft equipped with explosives was caught in the dictionary in September 2011. In addition, high-performance unmanned aerial vehicles in the United States 'sentinel' of the technology being leaked to Iran in late 2011 was an accident. Terrorist attacks on the forces used unmanned aircraft will be the day the not too distant. The purpose of this research is to provide response plans against acts of terrorism utilizing unmanned aircrafts to prevent large losses of lives such as the terrorist attacks of September 11. Discussing in detail, this research suggests revising and newly implementing the definition and categorization of unmanned aircrafts as well as relevant punishment in current aeronautics regulations as an initial response against acts of terrorism utilizing unmanned aircrafts. This is in order to newly implement and revise current relevant regulations that inadequately address the rapidly developing and changing unmanned aircrafts which will lead to increased sense of alarm for the potential terrorists, and also to introduce a systematic tool to punish those who commit such acts by clearly establishing the grounds for punishment. Also, under the binary operating system over airspace currently implemented globally, it is impossible to identify and control the infiltration of airspace by unmanned aircrafts. Recognizing such limitations, this research suggests a combined operation of airspace for unmanned and manned aircrafts as a second way of response for acts of terrorism utilizing unmanned aircrafts. A systematic integrated operation of airspace will appropriately control unmanned/ manned aircrafts that were not previously reported or otherwise have deviated from navigation routes, and will be able to prevent terrorism attempts utilizing aircrafts beforehand.

  • PDF

Study on Integrated-Flight Simulation Method Using CFT Imagery (탑재비행시험 영상을 적용한 통합비행 시뮬레이션 기법 연구)

  • Jeong, Dong Gil;Yun, Hyo Seok;Park, Jin Hyen
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.111-117
    • /
    • 2018
  • It is indispensable for a missile to track a target under the flight condition since the tracking capability affects the system performance considerably. The best way to verify the tracker's performance is flight test while it costs too much. Consequently, captive flight test or CFT has an important role in the development of a missile system. CFT, however, cannot simulate missile dynamics and is an offline and open-loop test. In this paper, we propose a new integrated-flight simulation(IFS) method using CFT imagery to overcome the limitation of synthetic image-based IFS method. This method increases the utilization of CFT's outputs and compensates the reality of imagery which lacks in the synthetic image-based IFS. Using this method make it possible to verify the system capability in various simulation modes.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.

A Study on Applying The DO-178C to The Control SW Development of The Military Aircraft Intercom Based on CMMI (CMMI 기반 군 항공기 인터콤 탑재용 제어 소프트웨어 개발에 대한 DO-178C 적용 연구)

  • Yoon, In-Bok
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.415-423
    • /
    • 2015
  • The DO-178C guide, which is referenced as the software development guide when a certification of the airworthiness in the commercial airplane is acquired by FAA in US, is recently referenced for the local military aircraft airworthiness. This indicates that when the auditor of the military aircraft airworthiness looks over the software development documents, the auditor reviews if all of the documents are verified in accordance with the DO-178C guide. However, when we developed the military aircraft intercom, We developed its control software in accordance with the CMMI level 3, since there were no requirements for the compliance of the DO-178C guide. Therefore, When we consider the airworthiness of this intercomm system, The analysis for how much the software development based on the CMMI level 3 is different from the DO-178C guide is needed to prepare the essential software documents additionally. Thus, This study analyzes the differences between CMMI level 3 and DO-178C guide and provides that which data on the CMMI level 3 is necessary for the compliance of the aircraft airworthiness comparing with the DO-178C. The analyzed result can be applied at the software development of the other military aircraft avionics equipment based on the CMMI model environment considering the compliance of the military aircraft airworthiness.

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Development of Fuel Cell Power System for Unmanned Aerial Vehicle (무인 항공기용 연료 전지 동력 시스템 개발)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • Fuel cell power system was developed for high-endurance unmanned aerial vehicle (UAV). Liquid chemical hydride was selected as a fuel due to its high energy density. Liquid storage of the fuel is an ideal alternative solution of the existing compressed hydrogen storage. The fueling system that extracts hydrogen from chemical hydride consists of catalytic reactor, micro-pump, fuel cartridge, separator, and controller. The fuel cell power system including the fueling system and the fuel cell that generates electricity was integrated into a proposed UAV. The performance verification of the fuel cell power system was performed to use as a power plant of the UAV.

  • PDF