This paper proposes a sinusoidal modeling of polyphonic audio signals. Sinusoidal modeling which has been applied well to speech and monophonic signals cannot be applied directly to polyphonic signals because a window size for sinusoidal analysis cannot be determined over the entire signal. In addition, for high quality synthesized signal transient parts like attacks should be preserved which determines timbre of musical instrument. In this paper, a multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in sinusoidal modeling a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. The improved dynamic segmentation is proposed which shows better performance about transients and reduced computation. For various polyphonic audio signals the result of simulation shows the suggested sinusoidal modeling can model polyphonic audio signals without loss of perceptual quality.
This paper presents the result of a technique to enhance TDAC in the AC-3 algorithm. To reduce block boundary noise without decreasing the performance of transform coding, We propose new special windows which improve the defect of the AC-3 algorithm that could not properly cancel aliasing in the transient period. In addition, a fast MDCT calculation algorithm based on a fast Fourier transform, is adopted.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.5
/
pp.435-441
/
2017
Detecting an inter-harmonic accurately is not easy work, because it has small magnitude, and its frequency which can be observed is not an integer multiple of fundamental frequency. In this paper, a new method using filter bank system and adaptive predictor is proposed. Filter bank system decomposes input signal to sub bands. In adaptive predictor, inter-harmonic is detected with decomposed sub band signal as input, and error signal as output. In this scheme, input-output characteristic of adaptive predictor is notch filter, as predicted harmonic is canceled in error signal, so detecting an inter-harmonic can be possible. Magnitude and frequency of detected inter-harmonic is estimated by recursive algorithm. The performances of proposed method are evaluated to sinusoidal signal model synthesized with harmonics and inter-harmonics. And validity of the method is proved as comparing the inter-harmonic detection results to MUSIC and ESPRIT.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.171-174
/
1998
본 논문에서는 음성합성(speech synthesis) 및 부호화(coding) 시스템에 있어서 음원(voice source) 모델링에 관한 문제를 살펴보고자 한다. 기존의 음원 모델링 시스템이 가지고 있는 여러 문제들을 극복하고자 기저함수(basis function) 의 가중 합(weighted-sum)으로 음원을 모델링 하는 새로운 기법을 제안하고자 한다. 제안한 방법에서는 음원 파형(voice source waveform)을 적절히 표현하기 위해서 필터뱅크(filter bank)에 기초한 기저함수의 가중 합으로 나타낸다. 다양한 음원 특성을 효과적으로 나타내는 음원 파라미터를 구하기 위하여 EM(estimate maximize)에 기초한 구조에 관해 조사한다. 제안한 방법을 이용하여 다양한 유성음에 대해 실험을 수행하였다. 실험결과 제안한 추정(estimation) 방법 및 모델링 방법을 이용하면 기존의 방법에 비해 더 정확한 음원 파형을 추정할 수 있고, 다양한 음원 특성을 나타낼 수 있다. 또한 음성합성 및 부호화에서도 음성품질(voice quality)를 개선시킬 수 있으리라 기대된다.
Kim, Yo-Han;Hong, Sang-Guen;Seo, Seung-Hun;Jo, Jung-Hun
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.8
/
pp.1213-1221
/
2022
In Electronic Warfare, the need to develop a jamming system that protects our location information from enemy radar is constantly increasing. The jamming system normally uses wide-band DRFM(Digital Radio Frequency Memory) that processes the entire bandwidth at once. However, it is difficult to jam if there is a CW(Continuous Wave) interference signal in the band. Recently, instead of wide-band signal processing, a structure using a filter bank that divides the entire band into several sub-bands and processes each sub-band independently has been proposed. Although it is possible to handle interference signal through the filter bank structure, spurious signal occurs when the signal is received at a boundary frequency between sub-bands. Spurious signal makes a output power of jamming signal distributed, resulting in lower JSR(Jamming to Signal Ratio) and less jamming effect. This paper proposes an over-sampled channelized DRFM structure that enables interference response and prevents spurious signal for sub-band boundary frequency input.
Voice conversion can be applied to various voice processing applications. It can also play an important role in data augmentation for speech recognition. The conventional method uses the architecture of voice conversion with speech synthesis, with Mel filter bank as the main parameter. Mel filter bank is well-suited for quick computation of neural networks but cannot be converted into a high-quality waveform without the aid of a vocoder. Further, it is not effective in terms of obtaining data for speech recognition. In this paper, we focus on performing voice-to-voice conversion using only the raw spectrum. We propose a deep learning model based on the transformer network, which quickly learns the voice conversion properties using an attention mechanism between source and target spectral components. The experiments were performed on TIDIGITS data, a series of numbers spoken by an English speaker. The conversion voices were evaluated for naturalness and similarity using mean opinion score (MOS) obtained from 30 participants. Our final results yielded 3.52±0.22 for naturalness and 3.89±0.19 for similarity.
Adaptive LMS algorithm has been used in many application areas due to its low complexity. In this paper input signal is transformed into the subbands with arbitrary bandwidth. In each subbands the dynamic range can be reduced, so that the independent filtering in each subbands has faster convergence rate than the full band system. The DCT transform domain LMS adaptive filtering has the whitening effect of input signal at each bands. This leads the convergence rate to very high speed owing to the decrease of eigen value spread Finally, the filtered signals in each subbands are synthesized for the output signal to have full frequency components. In this procedure wavelet filter bank guarantees the perfect reconstruction of signal without any interspectra interference. In simulation for the case of speech signal added additive white gaussian noise, the suggested algorithm shows better performance than that of conventional NLMS algorithm at high SNR.
In this paper, a method synthesizing speech signal using the 40 kHz ultrasonic signals reflected from the articulatory muscles was introduced and performance was evaluated. When the ultrasound signals are radiated to articulating face, the Doppler effects caused by movements of lips, jaw, and chin observed. The signals that have different frequencies from that of the transmitted signals are found in the received signals. These ADS (Acoustic-Doppler Signals) were used for estimating of the speech parameters in this study. Prior to synthesizing speech signal, a quantitative correlation analysis between ADS and speech signals was carried out on each frequency bin. According to the results, the feasibility of the ADS-based speech synthesis was validated. ADS-to-speech transformation was achieved by the joint Gaussian mixture model-based conversion rules. The experimental results from the 5 subjects showed that filter bank energy and LPC (Linear Predictive Coefficient) cepstrum coefficients are the optimal features for ADS, and speech, respectively. In the subjective evaluation where synthesized speech signals were obtained using the excitation sources extracted from original speech signals, it was confirmed that the ADS-to-speech conversion method yielded 72.2 % average recognition rates.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.2
/
pp.81-89
/
2008
Wideband speech, characterized by a bandwidth of about 7 kHz (50-7000 Hz), provides a substantial quality improvement in terms of naturalness and intelligibility. Although higher data rates are required, it has extended its application to audio and video conferencing, high-quality multimedia communications in mobile links or packet-switched transmissions, and digital AM broadcasting. In this paper, we present a new bandwidth-scalable coder for wideband speech and audio signals. The proposed coder spits 8kHz signal bandwidth into two narrow bands, and different coding schemes are applied to each band. The lower-band signal is coded using the ITU-T G.729/G.729E coder, and the higher-band signal is compressed using a new algorithm based on the gammatone filter bank with an invertible auditory model. Due to the split-band architecture and completely independent coding schemes for each band, the output speech of the decoder can be selected to be a narrowband or wideband according to the channel condition. Subjective tests showed that, for wideband speech and audio signals, the proposed coder at 14.2/18 kbit/s produces superior quality to ITU-T 24 kbit/s G.722.1 with the shorter algorithmic delay.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.7
/
pp.957-963
/
2007
In this paper, Nonlinear Autoregressive (NAR) method based on Least Square-Support Vector Regression (LS-SVR) is introduced and tested for nonlinear sustained vowel modeling. In the database of total 43 sustained vowel of Benign Vocal Fold Lesions having aperiodic waveform, this nonlinear synthesizer near perfectly reproduced chaotic sustained vowels, and also conserved the naturalness of sound such as jitter, compared to Linear Predictive Coding does not keep these naturalness. However, the results of some phonation are quite different from the original sounds. These results are assumed that single-band model can not afford to control and decompose the high frequency components. Therefore multi-band model with wavelet filterbank is adopted for substituting single band model. As a results, multi-band model results in improved stability. Finally, nonlinear sustained vowel modeling using NAR based on LS-SVR can successfully reconstruct synthesized sounds nearly similar to original voiced sounds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.