• Title/Summary/Keyword: 합성 집속

Search Result 18, Processing Time 0.019 seconds

Improvement of Signal to Noise Ratio by Synthetic Aperture Focusing Technique in Ultrasonic Testing (집속 신호 합성 기법에 의한 초음파 탐상 신호 개선)

  • Lee, S.L.;Chang, K.O.;Kim, B.C.;Kim, G.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.271-277
    • /
    • 1998
  • Nondestructive method can include both testing itself and analysis or evaluation of the testing results. Although vast amount of testing can be accomplished in a fairly short amount of time due to the advancement of electronic technology. it is really difficult matter to identify whether the indication found during testing corresponds to be a real defect. Thus, in ultrasonic testing, advanced digital signal processing techniques have been widely studied in order to identify the shape of the defect during testing, and one of the signal processing techniques, synthetic aperture focusing technique(SAFT) was tried for holes machined in carbon steel plate in this study. Result showed that signal to noise ratio has been improved considerably compared to the result from original RF signals.

  • PDF

An Efficient Motion Estimation and Compensation Method for Ultrasound Synthetic Aperture Imaging (초음파 합성구경 영상을 위한 효율적인 움직임 추정 및 보상 기법)

  • 김강식;황재섭;정종섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.87-99
    • /
    • 2002
  • This paper describes a method for overcoming the motion artifacts inherent in synthetic aperture(SA) imaging. based on the investigation results as to the influence of a target motion on synthetic aperture techniques. This method uses a region-based motion compensation approach in which only the axial motion is estimated and compensated for a given region of interest(ROI) under the assumption that the whole ROI moves uniformly The estimated axial motion is calculated with a crosscorrelation(CC) method at the Point where the focused signal has the maximum energy within the ROI. We also presents a method for estimating the axial motion using the autocorrelation(AC) method that is widely used to estimate average Doppler frequency Both computer simulations and in vivo experiments show that the proposed methods can improve greatly the spatial resolution and SNR of ultrasound imaging by implementing the SA techniques for two-way dynamic focusing without motion artifacts. In addition the AC-barred motion compensation method provides almost the same results as the CC-based one, but with a dramatically reduced computational complexity.

Enhancing Production Rate of Emulsion via Parallelization of Flow-Focusing Generators (유동-집속 생성기의 병렬화를 통한 에멀젼 생산속도 향상)

  • Jeong, Heon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.761-766
    • /
    • 2018
  • Droplet-based microfluidic device has led to transformational new approaches in various applications including materials synthesis and high-throughput screening. However, efforts are required to enhance the production rate to industrial scale because of low production rate in a single droplet generator. In here, we present a method for enhancing production rate of monodisperse droplets via parallelization of flow-focusing generators. For this, we fabricated a three-dimensional monolithic elastomer device (3D MED) that has the 3D channel structures in a single layer, using a double-sided imprinting method. We demonstrated that the production rate of monodisperse droplet is increased by controlling the flow rate of continuous and dispersed phases in 3D MED with 8 droplet generators. Thus, we anticipate that this microfluidic system will be used in wide area including microparticle synthesis and screening system via encapsulation of various materials and cells in monodisperse droplets.

Tx/Rx Bi-Directional Focusing by Using Multi-Element Defocusing Method in Ultrasonic Imaging System (초음파 영상시스템에서 다수 소자의 역 초점화 방법을 이용한 송수신 양방향 빔집속)

  • 이용호;송태경;안영복
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.583-589
    • /
    • 1999
  • 본 논문에서는 다수의 변환자 소자를 사용해서 빔을 역 초점화하는 새로운 방법을 제안한다. 제안된 방법은 64개의 소자를 사용해서 한 개의 소자에서 얻은 것과 거의 동일한 모양의 구면파를 얻을 수 있다. 이렇게 얻은 구면파는 합성집속에서 영상의 신호 대 잡음비를 높이는데 사용된다. 실험에서 제안된 방법은 영상의 해상도를 저하시키지 않고 신호대 잡음비를 크게 향상시킬 수 있음을 보여주었다. 특히 제안된 방법은 기존의 역초점화 방법에 의해 우수한 잡음 특성을 갖는다. 여기서 영상은 송수신의 양방향 빔집속에 의해서 얻었다.

  • PDF

Enhancement of the Mechanical Properties of CNT Fibers Synthesized by Direct Spinning Method with Various Post-Treatments (직접 방사법으로 합성된 탄소나노튜브 섬유의 기계적 특성 향상)

  • Kim, Jin-seok;Park, Junbeom;Kim, Seung Min;Kwac, L.K;Hwang, Jun Yeon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.239-243
    • /
    • 2015
  • Recent studies regarding the properties of carbon nanotubes (CNT) have made remarkable progress in CNT fibers research. However no CNT fibers showed the properties of CNTs because CNTs in fibers have weak interfacial bonding with low shear modulus in the pristine form. Thus, it is upmost interest to develop and employ post-production treatments to the CNT fibers that would potentially improve their properties. In this study, post-treatments resulted in improvement of strength of CNT fibers up to 40%.

New Circular Wave Generation Method for Synthetic Focusing in Ultrasonic Imaging Systems (초음파 영상 시스템에서 합성 집속을 위한 새로운 구면파 발생 방법)

  • Ahn, Young-Bok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.798-802
    • /
    • 2007
  • The synthetic focusing in the ultrasonic imaging systems has been formed in the way that one element transmits a circular wave and receives an echo signal. The amplitude of the signal transmitted from one element is too small to propagate a long distance so that the SNR(Signal to Noise Ratio) is very low in an image obtained by the synthetic focusing. To solve this problem, a defocusing method which uses several elements has been proposed. In this method, the SNR is improved due to using several elements to transmit the circular wave. But if the number of transmitting elements increases, the phase distortion is severe in the defocusing method. In this paper, we propose a new method that can generate a circular wave using a lot of elements without phase distortion. At first, we generate limited plane waves with different propagation angles and then superpose them to make a circular wave. We show that the circular wave can be used to improve SNR in the real-time 3D ultrasonic imaging as well as the synthetic focusing through computer simulation and experiments.

Development of Human-Head-Mimicking Phantom for Brain Treatment Using Focused Ultrasound (집속 초음파 뇌 질환 치료를 위한 두부 유사 팬텀의 개발)

  • Min, Jeonghwa;Kim, Juyoung;Noh, Sicheol;Choi, Heungho
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.433-439
    • /
    • 2013
  • In this study, human head-mimicking phantom was developed for brain disease treatment study using focused ultrasound. Acoustic parameters of skin, skull and brain were investigated through literature investigation and adequate substitutes according to each tissue were suggested. In the case of skin phantom, construction ratio of glycerol-based TMM phantom was controlled to mimic real skin. The suitability of skull substitutes was evaluated through measurement of acoustic parameters. In the case of brain phantom, transparent egg white phantom was used to observe thermal properties of focused ultrasound. Combined human-head-mimicking phantom using each substitutes was fabricated for development of brain disease treatment protocol. Denaturation of brain phantom according to ultrasonic condition was observed for validation.

Study on Enhancements to Ultrasonic Data Imaging Using Full Matrix Capture Technique (Full Matrix Capture 기법을 통한 초음파신호 영상화 향상 연구)

  • Lee, Tae-Hun;Yoon, Byung-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.299-306
    • /
    • 2015
  • A conventional phased array system can control an ultrasonic beam electronically by adjusting the excitation time delay of individual elements in a multi-element probe and produce an ultrasonic image. In Contrast, full matrix capture (FMC) is a data acquisition process that allows receiving ultrasonic signals from one single shot of the phased array transducer element through all the other elements and captures the complete dataset from every possible transmit-receive combination. This FMC data can be used to create the ultrasonic image in post processing. It is possible to produce not only images equivalent to conventional phased array image but also total focusing method (TFM) images with improved resolution and sharpness, which is virtually focused at any point in a region of interest. In this paper, the system that can perform FMC by using a conventional phased array instrument is developed, and a study was conducted on the imaging algorithms to reconstruct sector B-scan and TFM images from FMC dataset.