• Title/Summary/Keyword: 합성 제어

Search Result 998, Processing Time 0.035 seconds

Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid (규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성)

  • Chang, Han Kwon;Lee, Jin Woo;Oh, Kyoung Joon;Jang, Hee Dong;Kil, Dae Sup;Choi, Jeong Woo
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites (고방열 복합소재 개발을 위한 고열전도성 액정성 에폭시 수지의 개발)

  • Kim, Youngsu;Jung, Jin;Yeo, Hyeonuk;You, Nam-Ho;Jang, Se Gyu;Ahn, Seakhoon;Lee, Seung Hee;Goh, Munju
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has three-dimensional random network, it possesses thermal properties like a typical heat insulator. Recently, there has been increasing interest in controlling the network structure for making new functionality from EP. Indeed, the new modified EP represented as liquid crystalline epoxy (LCE) is spotlighted as an enabling technology for producing novel functionalities, which cannot be obtained from the conventional EPs, by replacing the random network structure to oriented one. In this paper, we review current progress in the field of LCEs and their application for the highly thermal conductive composite materials.

Preparation and characterization of SRF(Solid Refuse Fuel) using heavy oil fly ash (중유회를 활용한 고형연료 제조 및 특성)

  • Min, Hong;Cho, Sung-su;Seo, Minhye;Lee, Soo-Young;Choi, Changsik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.83-90
    • /
    • 2019
  • In this study, the characteristics of the SRF (Solid Refuse Fuel) prepared by blending each of the additives (citrus peel, waste wood, coal) in the heavy oil fly ash, evaluating the heavy oil fly ash recyclability. Recycling SRFs were fabricated by pellet extruding method after blending the heavy oil fly ash and additives based on 30% moisture content. As a result, the formability of the SRFs was excellent under condition of blending heavy oil fly ash with coal or citrus peel and the highest calorific value was 4,274 kcal/kg at heavy oil fly ash mixed with coal. Therefore, the formability and calorific value were improved when the heavy oil fly ash was mixed with coal(20 wt%) at 30% moisture content. From these results, the applicability of SRFs with additives was confirmed by using the heavy oil fly ash from J thermal power plant.

Mechanical Properties of Denture Base Resin through Controlling of Particle Size and Molecular Weight of PMMA (폴리(메틸 메타아크릴레이트) 입자 크기 및 분자량 제어에 따른 의치상 재료로서의 기계적 물성 변화)

  • 양경모;정동준
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.493-501
    • /
    • 2003
  • Poly(methyl methacrylate) (PMMA) particles, denture base resin, were synthesized by suspension polymerization through control of polymerization conditions (stabilizer concentration, co-monomer concentration, and the agitation speed) and evaluated changes in molecular weight and particle size. We also investigated their mechanical properties of compression-molded samples which were from synthesized polymer powder mixed with methyl methacrylate (MMA) solution. under the condition of volumetric ratio as 2:1(PMMA powder and MMA solution). The results shows that the mechanical properties were mainly affected by particle size over 100 ${\mu}$m (in particle size) and by molecular weight under 100 ${\mu}$m (in particle size). From these results, we concluded that the most appropriate particle size of PMMA powder for heat-cured denture base resins is around 100 ${\mu}$m. and its molecular weight is around 300000 (M$\sub$n/).

The Effct of SHS Reaction Heat Control on the Microstructure of TiAl (고온 자전 합성시 반응열 제어가 TiAl 미세 조직에 미치는 영향에 관한 연구)

  • Mun, Jong-Tae;Yeom, Jong-Taek;Sin, Bong-Mun;Kim, Yong-Seok;Lee, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.869-879
    • /
    • 1995
  • TiAi intermetallic compound has been extensively studied for possible high temperature structural applications because of its high specific strength at high temperature, high creep resistance, and good oxidation resistance at elevated temperatures. In addition to its good properties, an economic manufacturing routes should be developed for this material to be used more extensively. One of the promising route in manufacturing TiAl intermetallics is the Self-propagating High-temperature Synthesis (SHS) method. Thus in this study, an attempt was made to study the mechanism of the SHS process in TiAl synthesis. The composition of the sample was Ti-(45, 50, 53)at% Al and the microstuctures of the products were analyzed using optical microscope and scanning electron microscope. When the phases formed at the main SHS reaction of whicyh combustion temperature is higher than the melting temperature of aluminum were identified as TiAl and Ti$_3$Al ; Ti$_3$Al cores surrounded by TiAl phase. In order to increase the combustion temperature, carbon was added 5 and 10at.%. When the carbon content was 10at.%, the heat of the reaction was large enough to melt the phase formed and that is consistent with the theoretical calculation results of the adiabatic temperature. The combution temperatue, which was measured by a computer data acquisition system, increased with the carbon content. The phases formed from the reaction involving the carbon added were indentified as TiAl and Ti$_2$AlC using XRD. The vickers hardness of the reaction product increased with the carbon content.

  • PDF

Recursive Error-Component Correcting Method for 3D Shape Reconstruction (3차원 형상 복원을 위한 재귀적 오차 성분 보정 방법)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1923-1928
    • /
    • 2017
  • This paper is a study on error correction for three-dimensional shape reconstruction based on factorization method. The existing error correction method based on factorization has a limitation of correction because it is optimized globally. Thus in this paper, we propose our new method which can find and correct the only major error influence factor toward three-dimensional reconstructed shape instead of global approach. We define the error-influenced factor in two-dimensional re-projection deviation space and directly control the error components. In addition, it is possible to improve the error correcting performance by recursively applying the above process. This approach has an advantage under noise because it controls the major error components without depending on any geometric information. The performance evaluation of the proposed algorithm is verified by simulation with synthetic and real image sequence to demonstrate noise robustness.

Optimal Design of a 2-D Quadrature Polar Separable Filter (2차원 Quadrature Polar Separable 필터의 최적 설계)

  • 박종안;박승진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.434-444
    • /
    • 1991
  • An improved 2-D quadrature polar separable (QPS) filter and its applications to texture processing are discussed in thie paper. The frequency response of the filter consists of two independent parts. The first is a radial weighting function based on the prolate spheridal sequence(PSS). The second is the same orientational function of the angle as in the Knutsson filter. The new filter is suboptimal in the energy loss because we let the polar angle function approximate the radial weighting function as in the 2-D Cartesian filter composed of two PSS's. It is easy to control as it depends only upon the design specification of the bandwidth, the drectional agnle, and the central freqneucy. Also the filter is circularly more symmetric in the frequency domain than the Knutsson filter. In order to estimate the orientation and the frequency component of loca textures in the frequency domain, some applications of the new filter, such as the generation of synthetic textures, the estimation of texture orientations, and texture segementations, are discussed.

  • PDF

Preparation of Pure Silver Powders by using Mechanochemical Process (기계화학공정(機械化學工程)에 의한 은(銀)염화물로부터 고순도 은(銀)분말 제조(製造))

  • Lee, Jaer-Yeong;Tung Le, M.;Ahn, Jong-Gwan;Kim, Jong-Oh;Chung, Hun S.;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.33-37
    • /
    • 2006
  • An equal-molar mixture of silver chloride (AgCl) and copper (Cu) was ground in atmosphere conditions using a planetary ball mill to investigate mechanochemical (MC) reaction for preparation of silver powders. The reaction causes the mixture of AgCl and Cu to change the composition of the mixture, such as silver (Ag) and cuprous chloride (CuCl). Through the leaching with ammonium hydroxide solution (1 mol), CuCl can be separated from MC product, so that pure Ag powders can be obtained as the final product. Moreover, polyvinylpyrrolidone (PVP) was used as the additive not only to improve dispersion of Ag pow- der during MC process, but also to control surface oxidation of Ag powders, prepared as the final product.

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity (고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발)

  • Kim, Hyeonil;Ko, Heung Cho;You, Nam-Ho
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.