DOI QR코드

DOI QR Code

Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites

고방열 복합소재 개발을 위한 고열전도성 액정성 에폭시 수지의 개발

  • Kim, Youngsu (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Jung, Jin (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Yeo, Hyeonuk (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • You, Nam-Ho (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Jang, Se Gyu (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Ahn, Seakhoon (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST)) ;
  • Lee, Seung Hee (Department of BIN Convergence Technology, Chonbuk National University) ;
  • Goh, Munju (Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST))
  • Received : 2016.06.30
  • Accepted : 2017.02.24
  • Published : 2017.02.28

Abstract

Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has three-dimensional random network, it possesses thermal properties like a typical heat insulator. Recently, there has been increasing interest in controlling the network structure for making new functionality from EP. Indeed, the new modified EP represented as liquid crystalline epoxy (LCE) is spotlighted as an enabling technology for producing novel functionalities, which cannot be obtained from the conventional EPs, by replacing the random network structure to oriented one. In this paper, we review current progress in the field of LCEs and their application for the highly thermal conductive composite materials.

에폭시 수지는 3차원 네트웍 구조를 갖는 대표적인 열경화성 수지이다. 최근 에폭시 수지의 네트웍 구조를 제어하여 새로운 기능성 에폭시를 개발하는 연구가 활발히 진행되고 있다. 특히, 액정성 에폭시를 대표로 하는 새로운 개질 에폭시는 랜덤한 형태의 네트웍 구조를 배향 구조로 변경함으로써, 기존의 에폭시로부터 얻을 수 없는 새로운 기능성 발현에 성공하고 있다. 본 논문에서는 액정성 에폭시 수지의 합성과 고방열성 복합재료로의 응용에 관하여 설명하였다.

Keywords

References

  1. (Book) Pilato, L.A., and Michno, M.J. In Advanced Composite Material, Springer Science & Business Media. 1994.
  2. (International Journal) Choi, J.H., Song, H.J., Jung, J., Yu, J.W., You, N.H., and Goh, M., "Effect of Crosslink Density on Thermal Conductivity of Epoxy/Carbon Nanotube Nanocomposites," J. Appl. Polym. Sci. Vol. 134, 2017, pp. 4453 (1-7).
  3. (International Journal) Yu, J., Jung, J., Choi, Y., Choi, J., Yu, J., Lee, J., You, N., and Goh, M., "Enhancement of the Crosslink Density, Glass Transition Tempertature, and Strength of Epoxy Resin by Using Functionalized Graphene Oxide Co-curing Agents," Polymer Chemistry, Vol. 7, 2016, pp. 36-43. https://doi.org/10.1039/C5PY01483B
  4. (International Journal) Hansen, D., and Bernier, G.A., "Thermal Conductivity of Polyethylene: The Effects of Crystal Size, Density and Orientation on the Thermal Conductivity," Polymer Engineering & Science, Vol. 12, 1972, pp. 204-208. https://doi.org/10.1002/pen.760120308
  5. (International Journal) Choy, C.L., Luk, W.H., and Chen, F.C., "Thermal Conductivity of Highly Oriented Polyethylene," Polymer, Vol. 19, 1978, pp 155-162. https://doi.org/10.1016/0032-3861(78)90032-0
  6. (International Journal) Choy, C.L., and Young, K., "Thermal Conductivity of Semicrystallinea Model," Polymer, Vol. 18, 1977, pp. 769-776. https://doi.org/10.1016/0032-3861(77)90179-3
  7. (International Journal) Akatsuka, M., and Takezawa, Y., "Study of High Thermal Conductive Epoxy Resins Containg Controlled High-order Structures," Journal of Applied Polymer Science, Vol. 89, 2003, pp. 2464-2467. https://doi.org/10.1002/app.12489
  8. (Book) Mossety-Leszczak, B., and Wlodarska, M., "Liquid Crystallinity in Polymers-liquid Crystalline Epoxy Resins", Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: from Synthesis to Applications, Transworld Research Network, India, 2011.
  9. (International Journal) Harada, M., Hamaura, N., Ochi, M., and Agari, Y., "Theraml Conductivity of Liquid Crystalline Epoxy/BN Filler Composites having Ordered Network Structure," Composites: Part B. Vol. 55, 2013, pp. 306-313. https://doi.org/10.1016/j.compositesb.2013.06.031
  10. (International Journal) Barklay, G.G., McNames, S.G., Ober, C.K., Papathomas, K.I., and Wang, D.W., "The Mechanical and Magnetic Alignment of Liquid Crystalline Epoxy Thermoset," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 30, 1992, pp. 1845-1853. https://doi.org/10.1002/pola.1992.080300907
  11. (International Journal) Harada, M., Ochi, M., Tobita, M., Kimura, T., Ishigaki, T., Shimoyama, N., and Aoki, H., "Thermal-conductivity Properties of Liquid-crystalline Epoxy Resin Cured under a Magnetic Field," Journal of Polymer Science Part B: Polymer Physics, Vol. 41, 2003, pp. 1739-1743. https://doi.org/10.1002/polb.10531
  12. (Korean Journal) Oh, Y., You, B.I., Ahn, J.H., and Lee, G.W., "Investigation of Thermal Stability of Epoxy Composite Reinforced with Multi-walled Carbon Nanotubes and Micrometersized Silica Particles," Journal of the Korean Society for Composite Materials, Vol. 29, 2016, pp. 306-314.
  13. (International Journal) Wu, X., Jiang, P., Zhou, Y., Yu, J., Zhang, F., Dong, L., and Yin, Y., "Influence of Alumina Content and Thermal Treatment on the Thermal Conductivity of UPE/$Al_2O_3$ Composite," J. Appl. Polym. Sci. Vol. 131, 2014.
  14. (International Journal) Donnay M., Tzawalas, S., and Logakis, E., "Boron Nitride Filled Epoxy with Improved Thermal Conductivity and Dielectric Breakdown Strength," Composites Sci and Tech. Vol. 441, 2015, pp. 152-158.

Cited by

  1. Phenylcyclohexyl mesogenic moieties를 함유한 고 열전도성 액정성 에폭시 수지의 개발 vol.30, pp.6, 2017, https://doi.org/10.7234/composres.2017.30.6.350
  2. 용융가압함침공정을 이용한 세라믹 입자 강화 철강복합재료의 제조성 검증 vol.31, pp.4, 2017, https://doi.org/10.7234/composres.2018.31.4.117
  3. 산화주석을 함유한 열경화성 액정 에폭시의 열적 특성에 관한 연구 vol.33, pp.1, 2017, https://doi.org/10.7234/composres.2020.33.1.025