• 제목/요약/키워드: 합성 순환 신경망

검색결과 46건 처리시간 0.025초

자막방송을 위한 잔차 합성곱 순환 신경망 기반 음향 사건 분류 (Residual Convolutional Recurrent Neural Network-Based Sound Event Classification Applicable to Broadcast Captioning Services)

  • 김남균;김홍국;안충현
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.26-27
    • /
    • 2021
  • 본 논문에서는 자막방송 제공을 위해 방송콘텐츠를 이해하는 방법으로 잔차 합성곱 순환신경망 기반 음향 사건 분류 기법을 제안한다. 제안된 기법은 잔차 합성곱 신경망과 순환 신경망을 연결한 구조를 갖는다. 신경망의 입력 특징으로는 멜-필터벵크 특징을 활용하고, 잔차 합성곱 신경망은 하나의 스템 블록과 5개의 잔차 합성곱 신경망으로 구성된다. 잔차 합성곱 신경망은 잔차 학습으로 구성된 합성곱 신경망과 기존의 합성곱 신경망 대비 특징맵의 표현 능력 향상을 위해 합성곱 블록 주의 모듈로 구성한다. 추출된 특징맵은 순환 신경망에 연결되고, 최종적으로 음향 사건 종류와 시간정보를 추출하는 완전연결층으로 연결되는 구조를 활용한다. 제안된 모델 훈련을 위해 라벨링되지 않는 데이터 활용이 가능한 평균 교사 모델을 기반으로 훈련하였다. 제안된 모델의 성능평가를 위해 DCASE 2020 챌린지 Task 4 데이터 셋을 활용하였으며, 성능 평가 결과 46.8%의 이벤트 단위의 F1-score를 얻을 수 있었다.

  • PDF

그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 (Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks)

  • 최수연;박종열
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.649-654
    • /
    • 2023
  • 본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.

뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구 (Artificial neural network for classifying with epilepsy MEG data)

  • 한유진;김준식;김재희
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.139-155
    • /
    • 2024
  • 본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.

합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법 (Earthquake events classification using convolutional recurrent neural network)

  • 구본화;김관태;장수;고한석
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.592-599
    • /
    • 2020
  • 본 논문은 다양한 지진 이벤트 분류를 위해 지진 데이터의 정적인 특성과 동적인 특성을 동시에 반영할 수 있는 합성곱 순환 신경망(Convolutional Recurrent Neural Net, CRNN) 구조를 제안한다. 중규모 지진뿐만 아니라 미소 지진, 인공 지진을 포함한 지진 이벤트 분류 문제를 해결하려면 효과적인 특징 추출 및 분류 방법이 필요하다. 본 논문에서는 먼저 주의 기반 합성곱 레이어를 통해 지진 데이터의 정적 특성을 추출 하게 된다. 추출된 특징은 다중 입력 단일 출력 장단기메모리(Long Short-Term Memory, LSTM) 네트워크 구조에 순차적으로 입력되어 다양한 지진 이벤트 분류를 위한 동적 특성을 추출하게 되며 완전 연결 레이어와 소프트맥스 함수를 통해 지진 이벤트 분류를 수행한다. 국내외 지진을 이용한 모의 실험 결과 제안된 모델은 다양한 지진 이벤트 분류에 효과적인 모습을 보여 주었다.

3차원 합성곱 양방향 게이트 순환 신경망을 이용한 음악 템포 자극에 따른 다채널 뇌파 분류 방식 (Multi-channel EEG classification method according to music tempo stimuli using 3D convolutional bidirectional gated recurrent neural network)

  • 김민수;이기용;김형국
    • 한국음향학회지
    • /
    • 제40권3호
    • /
    • pp.228-233
    • /
    • 2021
  • 본 논문에서는 다양한 음악 템포 자극에 따라 변화하는 다채널 ElectroEncephaloGraphy(EEG)의 특징을 추출하고 분류하는 방식을 제안한다. 제안하는 방식에서 3차원 합성곱 양방향 게이트 순환 신경망은 전처리 과정 통해 변환된 3차원 EEG 입력 표현으로부터 시공간 및 긴 시간 종속적 특징을 추출한다. 실험 결과는 제안된 템포 자극 분류 방식이 기존의 방식보다 우수하며 음악 기반 뇌-컴퓨터 인터페이스를 구축할 수 있는 가능성을 보여준다.

Merlin 툴킷을 이용한 한국어 TTS 시스템의 심층 신경망 구조 성능 비교 (Performance comparison of various deep neural network architectures using Merlin toolkit for a Korean TTS system)

  • 홍준영;권철홍
    • 말소리와 음성과학
    • /
    • 제11권2호
    • /
    • pp.57-64
    • /
    • 2019
  • 본 논문에서는 음성 합성을 위한 오픈소스 시스템인 Merlin 툴킷을 이용하여 한국어 TTS 시스템을 구성한다. TTS 시스템에서 HMM 기반의 통계적 음성 합성 방식이 널리 사용되고 있는데, 이 방식에서 문맥 요인을 포함시키는 음향 모델링 구성의 한계로 합성 음성의 품질이 저하된다고 알려져 있다. 본 논문에서는 여러 분야에서 우수한 성능을 보여 주는 심층 신경망 기법을 적용하는 음향 모델링 아키텍처를 제안한다. 이 구조에는 전연결 심층 피드포워드 신경망, 순환 신경망, 게이트 순환 신경망, 단방향 장단기 기억 신경망, 양방향 장단기 기억 신경망 등이 포함되어 있다. 실험 결과, 문맥을 고려하는 시퀀스 모델을 아키텍처에 포함하는 것이 성능 개선에 유리하다는 것을 알 수 있고, 장단기 기억 신경망을 적용한 아키텍처가 가장 좋은 성능을 보여주었다. 그리고 음향 특징 파라미터에 델타와 델타-델타 성분을 포함하는 것이 성능 개선에 유리하다는 결과가 도출되었다.

인지 무선 통신을 위한 순환 신경망 기반 스펙트럼 센싱 기법 (Recurrent Neural Network Based Spectrum Sensing Technique for Cognitive Radio Communications)

  • 정태윤;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.759-767
    • /
    • 2020
  • 본 논문에서는 인지 무선 통신을 위한 새로운 순환 신경망 기반 스펙트럼 센싱 기법을 제안한다. 제안하는 기법은 주사용자에 대한 정보가 전혀 없는 상황에서 에너지 검출을 통해 신호 존재 유무를 판단한다. 제안 기법은 센싱하고자 하는 전체 대역을 고려하여 수신신호를 고속으로 샘플링 후 이 신호의 FFT (fast Fourier transform)를 통해 주파수 스펙트럼으로 변환한다. 이 스펙트럼 신호는 채널 대역폭 단위로 자른 후 순환 신경망에 입력하여 해당 채널이 사용중인지 비어있는지 판정한다. 제안하는 기법의 성능은 컴퓨터 모의실험을 통해 확인하는데 그 결과에 따르면 기존 문턱값 기반 기법보다 2 [dB] 이상 우수하며 합성곱 신경망 기법과 유사한 성능을 보인다. 또한, 실제 실내환경에서 실험도 수행하는데 이 결과에 따르면 제안하는 기법이 기존 문턱값 기반 방식 및 합성곱 신경망 방식보다 4 [dB] 이상 우수한 성능을 보인다.

비분할 비디오로부터 행동 탐지를 위한 순환 신경망 학습 (Learning Recurrent Neural Networks for Activity Detection from Untrimmed Videos)

  • 송영택;서준배;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.892-895
    • /
    • 2017
  • 본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.

심층강화학습에 은닉 상태 정보 활용을 통한 학습 성능 개선에 대한 고찰 (A Study on Learning Performance Improvement by Using Hidden States in Deep Reinforcement Learning)

  • 최요한;석영준;김주봉;한연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.528-530
    • /
    • 2022
  • 심층강화학습에 완전 연결 신경망과 합성곱 신경망은 잘 활용되는 것에 반해 순환 신경망은 잘 활용되지 않는다. 이는 강화학습이 마르코프 속성을 전제로 하기 때문이다. 지금까지의 강화학습은 환경이 마르코프 속성을 만족하도록 사전 작업이 필요했다, 본 논문에서는 마르코프 속성을 따르지 않는 환경에서 이러한 사전 작업 없이도 순환 신경망의 은닉 상태를 통해 마르코프 속성을 학습함으로써 학습 성능을 개선할 수 있다는 것을 소개한다.

합성곱 신경망과 장단기 메모리를 이용한 사격음 분석 기법 (Shooting sound analysis using convolutional neural networks and long short-term memory)

  • 강세혁;조지웅
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.312-318
    • /
    • 2022
  • 본 논문은 딥러닝기법 중 하나인 합성곱 신경망과 순환 신경망 중 하나인 장단기 메모리를 이용하여 사격시 발생하는 소음(이하 사격음)만으로 화기의 종류, 사격음 발생지점에 관한 정보(거리와 방향)을 추정하는 모델을 다루었다. 이를 위해 미국 법무부 산하 연구소의 지원하에 생성된 Gunshot Audio Forensic Dataset을 이용하였으며, 음향신호를 멜 스펙트로그램(Mel-Spectrogram)으로 변환한 후, 4종의 합성곱 신경망과 1종의 장단기 메모리 레이어로 구성된 딥러닝 모델에 학습 및 검증 데이터로 제공하였다. 제안 모델의 성능을 확인하기 위해 합성곱 신경망으로만 구성된 대조 모델과 비교·분석하였으며, 제안 모델의 정확도가 90 % 이상으로 대조모델보다 우수한 성능을 보였다.