• Title/Summary/Keyword: 합성 데이터

Search Result 1,386, Processing Time 0.026 seconds

삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측 (Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images)

  • 유한길;윤군진
    • Composites Research
    • /
    • 제37권1호
    • /
    • pp.40-45
    • /
    • 2024
  • 본 연구에서는 고분자 전해질막 연료전지용 가스확산층의 투과도를 예측하기 위해 삼차원 합성곱 신경망 모델을 사용하는 방법론을 소개한다. 먼저, 기계학습 모델을 학습시키기 위해 X-선 단층 촬영을 통해 얻은 실제 가스확산층 이미지에서 형태학적 특성을 추출해 가스확산층의 대표 체적 요소로 이루어진 인공 데이터셋을 생성한다. 이러한 형태학적 특성은 다공성, 섬유 배향, 직경의 통계적 분포가 포함된다. 구축한 인공 데이터셋 대표 체적 요소들의 투과도를 평가하기 위해 격자 볼츠만 방법이 사용되었으며 각각의 대표 체적 요소들의 투과도를 도출하였다. 이러한 인공 데이터셋을 통해 삼차원 합성곱 신경망 모델을 학습시켰으며 인공 데이터셋을 학습한 삼차원 합성곱 신경망 모델이 실제 가스확산층의 대표 체적 요소 투과도 또한 잘 예측하는 것을 확인하였다.

이미지의 피사계 심도를 빠르게 계산하기 위한 쿼드트리 기반의 합성곱 신경망 최적화 (Quadtree-based Convolutional Neural Network Optimization to Quickly Calculate the Depth of Field of an Image)

  • 김동희;김수균;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.257-260
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.

  • PDF

손을 다루는 컴퓨터 비전 작업들을 위한 멀티 모달 합성 데이터 생성 방법 (Generating A Synthetic Multimodal Dataset for Vision Tasks Involving Hands)

  • 이창화;이선경;김동욱;정찬양;백승렬
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1052-1055
    • /
    • 2020
  • 본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다. 생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양 및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크 훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의 질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.

회전한 상표 이미지의 진위 결정을 위한 기계 학습 데이터 확장 방법 (Machine Learning Data Extension Way for Confirming Genuine of Trademark Image which is Rotated)

  • 구본근
    • Journal of Platform Technology
    • /
    • 제8권1호
    • /
    • pp.16-23
    • /
    • 2020
  • 상표권 보호를 위한 상표 이미지의 진위 결정에 심층 신경망인 합성곱 신경망을 이용할 수 있다. 이를 위해, 상표로 등록되어 있는 한 장의 상표 이미지를 반복적으로 학습하는 것은 기계학습의 성능을 감소시키는 원인이 된다. 따라서, 이러한 응용에서 학습 데이터는 다양한 방법으로 생성된다. 하지만 대상 이미지가 회전되어 있으면 원본이라 하더라도 인식하지 못하거나 위조 상표로 분류되기도 한다. 본 논문에서는 회전한 상표 이미지의 진위 결정을 위한 기계학습 데이터의 확장 방법을 제안한다. 본 논문에서 제안하는 학습 데이터 확장 방법은 기울어진 이미지를 생성하고 이를 학습 데이터로 사용하는 것이다. 본 논문에서 제안하는 학습 데이터 확장 방법의 유효성 검증을 위해 대학의 로고를 대상으로 학습 데이터를 생성하였으며, 이를 활용하여 합성곱 신경망을 학습시킨 후 검증용 데이터를 이용하여 정확도를 평가하였다. 정확도 평가 결과에 따르면 본 논문에서 제안한 방법으로 생성한 학습 데이터를 활용하면 회전한 상표를 대상으로 한 진위 여부 결정에 합성곱 신경망을 활용할 수 있다.

  • PDF

Text Augmentation Using Hierarchy-based Word Replacement

  • Kim, Museong;Kim, Namgyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.57-67
    • /
    • 2021
  • 최근 딥 러닝(Deep Learning) 분석에 이질적인 데이터를 함께 사용하는 멀티모달(Multi-modal) 딥러닝 기술이 많이 활용되고 있으며, 특히 텍스트로부터 자동으로 이미지를 생성해내는 Text to Image 합성에 관한 연구가 활발하게 수행되고 있다. 이미지 합성을 위한 딥러닝 학습은 방대한 양의 이미지와 이미지를 설명하는 텍스트의 쌍으로 구성된 데이터를 필요로 하므로, 소량의 데이터로부터 다량의 데이터를 생성하기 위한 데이터 증강 기법이 고안되어 왔다. 텍스트 데이터 증강의 경우 유의어 대체에 기반을 둔 기법들이 다수 사용되고 있지만, 이들 기법은 명사 단어의 유의어 대체 시 이미지의 내용과 상이한 텍스트를 생성할 가능성이 있다는 한계를 갖는다. 따라서 본 연구에서는 단어가 갖는 품사별 특징을 활용하는 텍스트 데이터 증강 방안, 즉 일부 품사에 대해 단어 계층 정보를 활용하여 단어를 대체하는 방안을 제시하였다. 또한 제안 방법론의 성능을 평가하기 위해 MSCOCO 데이터를 사용하여 실험을 수행하여 결과를 제시하였다.

LSP를 이용한 음소단위 PSOLA 음성합성에 관한 연구 (A Study on Phoneme-Based PSOLA Speech Synthesis Using LSP)

  • 권혁제;조순계;김종교
    • 한국음향학회지
    • /
    • 제17권2호
    • /
    • pp.3-10
    • /
    • 1998
  • 본 논문에서는 음소단위 PSOLA 한국어 합성을 LSP line의 조절과 자모음 분석을 통해서 실시하였다. 음성합성에서 많이 사용하는 triphone, diphone, demisyllable등과 같은 합성단위들은 자연스러운 합성음을 위해 다양한 음운환경에서 수집된다. 그러나, 이런 방법 은 많은 시간과 메모리가 요구된다. 본 논문에서는 합성단위로서 자음17개, 모음 16개로 총 33개의 음소를 이용하였다. 자음은 후위모음/이/인 CV에서 segment되고, 모음은 단음절의 단모음과 이중모음을 1인의 화자로부터 합성데이터를 수집하였다. 또한, 10명의 화자가 발성 한 CV에서 각 모음에 따라 변하는 자음의 주파수를 분석하였고, CV+VC 또는 CV+CV에서 각 자음에 따라 변하는 모음의 포먼트변화를 분석하였다. 분석결과를 토대로 모음은 LSP line을 조절해서 PSOLA합성을 하고, 자음은 합성하려는 모음과 결합하였다. 그 결과 6개의 합성단어에 대한 청취율은 65%를 보였다.

  • PDF

의료 인공지능 성능 향상을 위한 GAN 기반 희소 질병 데이터 합성 (GAN-Based Synthesis of Sparse Disease Data for Improving Medical AI Performance)

  • 정예림;김소연;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.707-708
    • /
    • 2024
  • 최근 디지털 헬스케어 기술과 서비스가 널리 활용되면서 의료 인공지능 성능 향상에 대한 관심이 높아지고 있다. 그러나 양성 데이터 대비 질병 데이터가 희소하여 학습 과정에서 과적합이 발생하거나 질병 예측 모델의 성능이 떨어진다는 한계가 있다. 본 논문에서는 데이터가 균질하지 않은 상황에서 생성형 인공지능 모델을 사용하여 합성 데이터를 생성하는 방안을 제안한다. 실험 결과에 따르면, 종래 방법 대비 제안한 방법의 정확도가 약 5.8% 향상되었고, 재현율이 약 21% 개선되었다.

A Study on Improving the Accuracy of Medical Images Classification Using Data Augmentation

  • Cheon-Ho Park;Min-Guan Kim;Seung-Zoon Lee;Jeongil Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.167-174
    • /
    • 2023
  • 본 연구는 합성곱 신경망 모델에서 이미지 데이터 증강을 통하여 대장암 진단 모델의 정확도를 개선하고자 하였다. 이미지 데이터 증강은 기초 이미지 조작 방법을 이용하여 뒤집기, 회전, 이동, 밀림, 주밍을 사용하였다. 본 연구에서는 실험설계를 위해 보유하고 있는 5000개의 이미지 데이터에 대해 훈련 데이터와 평가 데이터로 각각 4000개와 1000개로 나누었으며, 훈련 데이터 4000개에 대해 이미지 데이터 증강 기법으로 4000개와 8000개의 이미지를 추가하여 모델을 학습시켰다. 평가 결과는 훈련 데이터 4000개, 8000개, 12000개에 대한 분류 정확도가 각각 85.1%, 87.0%, 90.2%로 나왔으며 이미지 데이터 증강에 따른 개선 효과를 확인하였다.

3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법 (A GAN-based face rotation technique using 3D face model for game characters)

  • 김한동;한종대;양희경;민경하
    • 한국게임학회 논문지
    • /
    • 제21권3호
    • /
    • pp.13-24
    • /
    • 2021
  • 본 논문은 게임 캐릭터 얼굴 일러스트레이션에 적용할 수 있는 안면 회전 기술(Face rotation) 기술을 제안한다. 기존의 진행된 연구들은 실제 사람의 얼굴 데이터에 대해서로 데이터를 한정하였으며 방대한 양의 데이터를 필요로 하였고 합성된 결과물이 좋지 못한 문제가 있었다. 본 논문에서는 기존 연구들의 존재하는 문제를 해결하기 위해 다음과 같은 방법을 도입하였다. 첫째, 입력 이미지가 갖고 있는 특징을 입힌 3D 모델을 회전시키고 다시 2D 이미지로 렌더링하여 학습 및 평가에 필요한 데이터 셋을 구축하였다. 둘째, 3D 모델을 통해 구축된 데이터에서 다양한 각도의 특징을 학습할 수 있는 적대적 생성 모델(Generative Adversarial Networks)을 설계하여 입력된 이미지를 원하는 각도로 합성할 수 있다. 논문에서는 실제 게임 캐릭터 얼굴 일러스트레이션 합성 결과를 제시한다. 합성 결과를 통해 논문에서 제안하는 방법이 잘 동작함을 확인할 수 있다.

불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정 (Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning)

  • 최영철;백지현;주광진;이동건;황경하;이승용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권3호
    • /
    • pp.45-54
    • /
    • 2022
  • 영상의 깊이 추정은 다양한 영상 분석의 기반이 되는 기술이다. 딥러닝 모델을 활용한 분석 방법이 대두되면서, 영상의 깊이 추정 분야 또한 딥러닝을 활용하는 연구가 활발하게 이루어지고 있다. 현재 대부분의 딥러닝 영상 깊이 추정 모델들은 깨끗하고 이상적인 환경에서 학습되고 있다. 하지만 연무, 안개가 낀 열악한 환경에서도 깊이 추정 기술이 잘 동작할 수 있으려면 이러한 환경의 데이터를 포함하여야 한다. 하지만 열악한 환경의 영상을 충분히 확보하는 것이 어려운 실정이며, 불균일한 안개 데이터를 얻는 것은 특히 어려운 문제이다. 이를 해결하기 위해, 본 연구에서는 불균일 안개 영상 합성 방법과 이를 활용한 단안 기반의 깊이 추정 딥러닝 모델의 학습을 제안한다. 안개가 주로 실외에서 발생하는 것을 고려하여, 실외 위주의 데이터 세트를 구축한다. 그리고 실험을 통해 제안된 방법으로 학습된 모델이 합성 데이터와 실제 데이터에서 깊이를 잘 추정하는 것을 보인다.