• Title/Summary/Keyword: 합성지오이드모델

Search Result 15, Processing Time 0.025 seconds

Development of Hybrid Geoid using the Various Gravimetric Reduction Methods in Korea (다양한 중력학적 환산방법을 적용한 한국의 합성지오이드 개발)

  • Lee, Dong-Ha;Lee, Suk-Bae;Kwon, Jae Hyoun;Yun, Hong-Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.741-747
    • /
    • 2008
  • Nowadays, the accuracy of the geoid model has been improved through development of the combination model which was composed of traditional gravimetric geoid and geometric geoid by the GPS/leveling data in USA and Japan. It is a state of the art method in geoid modeling field that what so called hybrid geoid. In this paper, as a basic study to develop Korean hybrid geoid model, we studied gravimetric geoid solutions using three gravity reduction methods (Helmert's condensation method, RTM method and Airy-isostatic method) and evaluated the usefulness of each method in context of precise geoid. The gravimetric geoid model were determined by restoring the gravity anomalies (included TC) and the indirect effects were made from various reduction methods on the EIGEN-CG03C reference field. The results are compared with respect to the geometric geoid undulation determined from 498 GPS/leveling after LSC fitting. The results showed that hybrid geoid with RTM (Residual terrain model) reduction method was most accurate method and the value of the difference compared to geometric geoid was $0.001{\pm}0.053m$.

Development of Korean Geoid Model and Verification of its Precision (우리나라 지오이드 모델 구축 및 정밀도 검증)

  • Lee, Jisun;Kwon, Jay Hyoun;Baek, Kyeong Min;Moon, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • The previous geoid model developed in early 2000s shows 14cm level of precision due to the problems on distribution, and quality of the land gravity and GPS/Leveling data. From 2007, the new land and airborne gravity data as well as GPS/Leveling data having high quality and regular distribution has been obtained. In 2011, a new gravimetric geoid model has been constructed with precision of 5.29cm which was improved about 27% comparing to the previous model. However, much more land gravity data has been collected at the control point, bench marks and triangulation points since 2010. Also, GPS/Leveling data having 10km spacing over whole country has been obtained through the project which is for the construction of new control points. In this study, new gravimetric geoid has been calculated based on the all available gravity data up to present. The geoid height shows the range from 18.05m to 32.70m over whole country and its precision is 5.76cm. The degree of fit and precision of hybrid geoid model are 3.60cm and 4.06cm, respectively. At the end, 3.35cm of the relative precision in 15km baseline has been calculated to confirm its practical usage. Especially, it has been founded that regional bias occurred at the Kangwon and coastal area due to problems on the leveling data. Also, some inland points show inconsistent large difference which needs to be verified by analyzing the unified control points results.

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

Geoidal Heights Analyses in and around Korean Peninsula using EGM96 and OSU91A Geopotential Model (EGM96과 OSU91A 지오포텐셜 모델에 의한 한반도 일원에서의 지오이드 비교분석)

  • 이석배;최재화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.131-139
    • /
    • 1997
  • Geopotential models were used to determine the reference surface in geoid modelling and until now, OSU91A model has been most widely used in the world. But what so called EGM96, GSFC/DMA geopotential model published in the latter half of the 1996 by GSFC/DMA project. In this paper, we intended to compare the results of spherical harmonic analyses using the both geopotential model and the spherical harmonic analyses performed up to degree and order 300 and the gravimetric geoidal heights considering gravity data on each $3'\times{3'}$ grid point in and around Korean peninsula. The results showed that the average geoidal height of study area computed from EGM96 is larger 0.40 m than that computed from OSU91A and the gravimetric geoidal heights us-ing EGM96 is larger 0.35 m than that using OSU91A model.

  • PDF

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Development of Precise Geoid Model in Jeju Island (제주도 지역의 정밀지오이드 모델 개발)

  • Lee, Dong-Ha;We, Gwang-Jae;Huang, He;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • The determination of precise geoid model for the Jeju island is needed to minimize the effect of different vertical datums. This study describes the development of gravimetric geoid model referred to GRS80 reference surface for the area of Jeju island. We used ECM96 up to degree and order 360 as a reference model and added the terrain and the residual gravity effects to the reference model. After then 17 GPS/Levelling data were used to correct the difference between the GPS/Levelling-derived geoid heights and gravimetric geoid heights. The least square collocation was applied to derive the correction and the grid values. The final precise geoid model(Jeju_GEOID07) that consist of $0.75'{\times}1'$(about $1.4km{\times}1.5km)$ grid interval was obtained in the region of $33^{\circ}{\sim}33.8^{\circ}N$ and $125.8^{\circ}{\sim}127.2^{\circ}E$. Concerning this works, the precise geoid for the Korean peninsula should be determined by integrating the different geoid developed for the peninsula and Jeju island. It is also need to integrate the vertical datum using long-term tide and GPS observations.

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

Calculation of Geometric Geoidal Height by GPS Surveying on 1st and 2nd order Benchmark Line (1, 2등 수준노선에서 GPS 측량에 의한 기하학적 지오이드고의 계산)

  • Lee, Suk-Bae;Kim, Jin-Soo;Kim, Cheol-Young;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.213-223
    • /
    • 2009
  • In geoid modelling field, it is very important the GPS/leveling data because it could be check-out the accuracy of gravimetric geoid and computed the hybrid geoid. In this study, GPS surveying was accomplished in the test area including mountainous area to improve the GPS/leveling data density in Korea. And the geometric geoidal heights was calculated using the GPS/leveling data in the test area and the accuracy of the geoidal heights was analyzed. For this study, GPS surveying was accomplished on the 211 1st and 2nd order benchmarks in Gyeongbuk province and 198 GPS/leveling data were achieved after both baseline analysis and network adjustment. Geometric geoidal heights were calculated using these 198 GPS/leveling data and the accuracy analysis was done by comparison with the geoidal heights from EGM2008 geopotential model. The results showed that the bias and standard deviation computed from 190 GPS/leveling data after gross removal was -0.185$\pm$0.079m. And also, the accuracy analyses according to the benchmark order, baseline length, and altitude were accomplished.

Precise Geoid Calculation Using Shipborne Gravity Data of the Mid-Yellow Sea Around KOREA (해상중력자료를 이용한 서해 중부해역의 정밀지오이드 산정)

  • 최윤수;박병욱;최광선;김진섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.383-388
    • /
    • 2002
  • This study suggests a data processing method for precise geoid height calculation through sea gravity data of mid-Yellow Sea provided by Haeyang 2000 and satellite altimetry data and the EGM96 geopotential model from GSFC/DMA in USA. Also it compared sea gravity data with satellite altimetry gravity data. As a result, precise geoidal undulation of the mid-Yellow Sea presented from calculating and integrating EGM96 geopotential model in degree and order 167 and a relative geoid by integral radius of 27km respectively It has a mean value of 18.339m, varying from 13.564m to 22.785m. the comparison between sea gravity data and satellite altimetry data shows that the former is more precise than the latter, which showed an anomaly of 0.56m0Gal and RMSE of 4.195m.

A Study on the Accuracy of GNSS Height Measurement Using Public Control Points (공공기준점을 이용한 GNSS 높이측량 정밀도 분석 연구)

  • WON, Doo-Kyeon;CHOI, Yun-Soo;YOON, Ha-Su;LEE, Won-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.78-90
    • /
    • 2021
  • In order to construct a precision geoid, it has been diversified into land, sea, aviation, and satellite gravity measurement methods, and measurement technology has developed, making it possible to secure high-resolution, high-precision gravity data. The construction of precision geoids can be fast and conveniently decided through GNSS surveys without separate leveling, and since 2014, the National Geographic Information Institute has been developing a hybrid geoid model to improve the accuracy of height surveying based on GNSS. In this study, the results of the GNSS height measurement were compared and analyzed choosing existing public reference points to verify the GNSS height measurement of public surveys. Experiments are conducted with GNSS height measurements and analyzed precision for public reference points on coastal, border, and mountainous terrain presented as low-precision areas or expected-to-be low-precision in research reports. To verify the GNSS height measurement, the GNSS ellipsoid height of the surrounding integrated datum to be used as a base point for the GNSS height measurement at the public datum. Based on the checked integrated datum, the GNSS ellipsoid of the public datum was calculated, and the elevation was calculated using the KNGeoid18 model and compared with the results of the direct level measurement elevation. The analysis showed that the results of GNSS height measurement at public reference points in the coastal, border, and mountainous areas were satisfied with the accuracy of public level measurement in grades 3 and 4. Through this study, GNSS level measurement can be used more efficiently than existing direct level measurements depending on the height accuracy required by users, and KNGeoids 18 can also be used in various fields such as autonomous vehicles and unmanned aerial vehicles.