얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수행할 수 있도록 한다. 그러나 얼굴 이미지의 변화는 고차원의 이미지 공간에서 복잡한 비선형 매니폴드를 구성하기 때문에 파라미터화 하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해, 얼굴 이미지에 대한 표현방법으로 LLE (Locally Linear Embedding) 알고리즘을 사용한다. LLE 알고리즘은 얼굴 이미지들 사이의 관계를 유지하면서 저차원의 특징 공간으로 투사된 매니폴드를 더욱 부드럽고 연속적으로 만들어준다. 그 다음, 특징공간에서 특정한 포즈나 표정 파라미터에 해당하는 포인트를 추정하기 위해 snake 모델을 적용한다. 마지막으로, 추정된 특징 값의 주변에 있는 여러 장의 얼굴 이미지들의 가중치 평균을 구해 합성된 결과이미지를 만든다 실험결과를 통해 제안된 방법을 이용하면 겹침 현상이 적고 포즈나 표정에 대한 파라미터의 변화와 일치하는 이미지를 합성한다는 것을 보인다.
컴퓨터에서 사용되는 2D 이미지는 크게 비트맵과 벡터의 두 가지 표현 방식이 존재한다. 일반적으로 사용되는 이미지와 텍스처는 대부분 비트맵을 기반으로 하고 있으며, 이에 따라 많은 텍스처 합성에 관한 연구 또한 비트맵 기반으로만 이루어져 왔다. 그러나 일부 분야들에서는 몇 가지 단점에도 불구하고 벡터 형식의 이미지를 선호하고 있으며, 비트맵이 가지지 못한 장점들과 현재의 충분한 컴퓨터 연산 능력을 고려해 볼 때 벡터 이미지의 필요성과 활용분야는 앞으로도 늘어날 것이라 생각된다. 이에 따라 본 논문에서는 벡터 형식으로 주어진 텍스처 패턴을 분석, 합성하는 새로운 방법을 제안한다. 입력 받는 벡터 이미지는 몇 가지의 속성을 지닌 스트로크(Stroke)들의 집합으로서, 각각의 스트로크는 비트맵에서의 픽셀과 같이 기본적인 분석과 합성의 단위가 된다.
본 논문에서는 인공신경망 기반의 슈퍼 해상도(Super-resolution, SR) 기법을 이용하여 저해상도(Low-resolution, LR) 헤어 시뮬레이션을 고해상도(High-resolution, HR)로 노이즈 없이 표현할 수 있는 기법을 제안한다. LR과 HR 머리카락 간의 쌍은 헤어 시뮬레이션을 통해 얻을 수 있으며, 이렇게 얻어진 데이터를 이용하여 HR-LR 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 머리카락의 위치를 지오메트리 이미지로 변환하여 사용한다. 우리가 제안하는 헤어 네트워크는 LR 이미지를 HR 이미지로 업스케일링 시키는 이미지 합성기를 위해 사용된다. 테스트 결과로 얻어진 HR 이미지가 HR 머리카락으로 다시 변환되면, 하나의 매핑 함수로 표현하기 어려운 머리카락의 찰랑거리는(Elastic) 움직임을 잘 표현할 수 있다. 합성 결과에 대한 성능으로는 전통적인 물리 기반 시뮬레이션보다 빠른 성능을 보였으며, 복잡한 수치해석을 몰라도 쉽게 실행이 가능하다.
딥러닝 기반의 영상 분석 방법들은 많은 양의 학습 데이터가 필요하며, 학습 데이터 구축에는 많은 시간과 노력이 소요된다. 특히 객체 검출 분야의 경우 영상 내 객체의 위치, 크기, 범주 등의 정보가 모두 필요하여 학습 데이터 구축에 더 많은 어려움이 있으며, 이를 해결하기 위해 최근 이미지 합성기반 데이터 증강에 관한 연구가 활발히 진행되고 있다. 이미지 합성기반 데이터 증강 방법은 배경 영상에 객체를 합성할 때 객체와 배경 영상이 접한 영역에서 아티팩트(Artifact)가 발생하며, 이는 객체 검출 모델이 아티팩트를 객체의 특징으로 모델링하여 검출 성능이 저하되는 원인이 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 양방향 필터 기반의 이미지 합성 방법을 제안하고, 단일 단계 검출의 대표적인 방법인 RetinaNet을 이용하여 이미지 합성기반 데이터 증강 방법의 성능을 분석하였다. 공개 데이터셋에 대한 실험 결과 본 논문에서 사용한 단일 검출 방법 및 데이터 증강 기법을 사용하면 더 적은 양의 증강 데이터로 기존 방법과 동일한 성능을 보여주는 것을 확인하였다.
본 연구에서는 스테레오비전 센서의 거리 정보와 컬러이미지를 합성하여 일정 거리 안에 있는 장애물을 탐색하는 방법을 제시하였다. 스테레오 비전 센서로 부터 취득한 깊이이미지(depth image)를 이용하여 거리 정보를 구하고 컬러 이미지와의 합성을 통해 모바일로봇 이동에 방해되는 장애물을 검출하였다. 검출된 장애물 정보는 모바일 로봇에 송신되어 무인이동장치로써 지역을 탐색하게 하여 깊이이미지 응용에 적용가능성을 평가하였다. 스테레오 비전 센서를 이용하는 무인이동장치의 성능을 평가하기 위해 장애물간의 거리에 대한 성능 평가를 하고 컬러이미지, 깊이이미지 그리고 합성이미지 유형에 따른 성능과 취득된 이미지 프레임의 수에 따른 성능도 살펴보았다. 처리 결과 깊이이미지에 비해 합성된 이미지가 개선된 성능을 보였다.
일인칭 관점의 훈련 시스템에서, 사용자는 실제적인 경험을 필요로 하는데, 이런 실제적인 경험을 제공하기 위하여 가상의 이미지 또는 실제의 이미지를 동시에 제공해야 한다. 이를 위해 본 논문에서는 자동적으로 사람의 팔을 분할하는 것과 이미지 합성 방법을 제안한다. 제안 방법은 팔 분할 부분과 이미지 합성 부분으로 구성된다. 팔 분할은 임의의 이미지들을 입력으로 받아서 팔을 분할하고 알파 매트(alpha matte)를 출력한다. 이는 종단 간 학습이 가능한데 이 부분에서 우리는 FCN(Fully Convolutional Network)을 활용했기 때문이다. 이미지 합성부분은 팔 분할의 결과와 길과 건물 같은 다른 이미지와의 이미지 조합을 만들어 낸다. 팔 분할 부분에서 네트워크를 훈련시키기 위하여, 훈련 데이터는 전체 비디오 중에서 팔의 이미지를 잘라내어 사용하였다.
딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.
본 논문은 정면과 측면 얼굴 이미지의 특성을 살린 3차원 개인 아바타 합성에 관한 연구이다. 표준 얼굴 메쉬를 얼굴 이미지의 특징점에 맞추려는 힘을 특징점 이외의 점들까지의 거리에 대한 가우스 분포를 따라 부드럽게 전달시켜 매쉬를 탄성있게 변형하는 힘으로 작용시켜 메쉬를 얼굴 이미지의 윤곽선을 중심으로 매칭시키고, 매칭된 메쉬가 매칭 이전의 메쉬의 기하학적 특성을 유지할 수 있도록 메쉬에 동적 피부 모델을 적용한다. 이렇게 생성한 3차원 메쉬에 이미지를 텍스춰 매핑하여 개인 특성을 살린 3차원 개인 아바타를 생성한다.
본 논문은 AI 기술을 기반으로 텍스트 스크립트를 자동으로 인식하고 영상 합성 기술을 응용하여 텍스트 정보를 시각화하는 AI 아나운서 소프트웨어 연구에 대하여 기술한다. 기존의 AI 기반 영상 정보 전달 서비스인 AI 앵커는 텍스트를 인식하여 영상을 합성하는데 오랜 시간이 필요하였으며, 특정 인물 이미지로만 영상 합성이 가능했기 때문에 그 용도가 제한적이었다. 본 연구에서 제안하는 방법은 Tacotron 으로 새로운 음성을 학습 및 합성하여, LRW 데이터셋으로 학습된 모델을 사용하여 자연스러운 영상 합성 체계를 구축한다. 단순한 얼굴 이미지의 합성을 개선하고 다채로운 이미지 제작을 위한 과정을 간략화하여 다양한 비대면 영상 정보 제공 환경을 구성할 수 있을 것으로 기대된다.
증강현실은 현실 공간에 가상의 객체를 합성한 영상을 생성하는 기술이다. 증강현실 기술에 대한 지속적인 수요 증가와 기술 발전이 이루어져 왔으며, 앞으로 사용자에게 현실을 기반으로 생성된 이질감이 느껴지지 않는 정교한 영상을 제공할 수 있으리라 기대할 수 있다. 본 논문에서는 증강현실 기술로 생성된 합성 영상이 정교한 영상임을 판단할 수 있는 객관적인 기준을 마련하기 위해 기존의 머신 러닝 기반의 이미지 분류 모델들로 합성 이미지 예측에 대한 실험을 진행하고 그 결과를 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.